

A145404


Number of perfect matchings (or domino tilings) in O_6 X P_n.


0



8, 137, 2016, 30521, 459544, 6926545, 104379840, 1573019185, 23705440040, 357242140889, 5383654944672, 81131924020457, 1222661758446136, 18425567948435617, 277674141464763264, 4184561857758579553, 63061536262455564872, 950340200711850811433
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129154.


LINKS

Table of n, a(n) for n=1..18.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129154.
F. Faase, Counting Hamiltonian cycles in product graphs.
F. Faase, Results from the counting program
Index entries for linear recurrences with constant coefficients, signature (12,47,8,47,12,1).


FORMULA

For n>6, a(n) = 12a(n1) + 47a(n2)  8a(n3)  47a(n4) + 12a(n5) + a(n6).
G.f.: x*(x^5 +12*x^4 46*x^3 4*x^2 +41*x +8)/(x^6 +12*x^5 47*x^4 8*x^3 +47*x^2 +12*x 1). [Colin Barker, Aug 23 2012]


CROSSREFS

Sequence in context: A024283 A134053 A136472 * A101388 A281684 A050789
Adjacent sequences: A145401 A145402 A145403 * A145405 A145406 A145407


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Feb 03 2009


EXTENSIONS

More terms from Max Alekseyev, Jun 24 2011


STATUS

approved



