|
|
A050789
|
|
Consider the Diophantine equation x^3 + y^3 = z^3 - 1 (x < y < z) or 'Fermat near misses'. The values of z (see A050787) are arranged in monotonically increasing order. Sequence gives values of y.
|
|
4
|
|
|
8, 138, 138, 426, 486, 720, 823, 812, 1207, 2292, 2820, 3230, 5610, 5984, 6702, 8675, 11646, 11903, 16806, 17328, 21588, 24965, 27630, 36840, 31212, 37887, 33857, 34566, 49409, 46212, 59022, 66198, 66167, 56503, 69479, 64165, 78244, 89970
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.
|
|
LINKS
|
|
|
EXAMPLE
|
575^3 + 2292^3 = 2304^3 - 1.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|