This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050791 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order. 13
 12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that n^3+1 is expressible as the sum of two nonzero cubes (both greater than 1). Values of z associated with A050794. Sequence is infinite. One subsequence is (from x = 1 + 9 m^3, y = 9 m^4, z = 3*m*(3*m^3 + 1), x^3 + y^3 = z^3 + 1): z(m) = 3*m*(3*m^3 + 1) = {12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, ...} = a (1, 3, 6, 10, 13, 17, 20, 23, 30, 37, ...). - Zak Seidov, Sep 16 2013 Numbers n such that n^3+1 is a member of A001235. - Altug Alkan, May 09 2016 REFERENCES Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124. David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147. LINKS Lewis Mammel, Table of n, a(n) for n = 1..368 Noam Elkies, Rational points near curves and small nonzero |x^3-y^2| via lattice reduction, arXiv:math/0005139 [math.NT], 2000. S. Ramanujan, Question 681, J. Ind. Math. Soc. Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers EXAMPLE 2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1. MATHEMATICA r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *) PROG (PARI) is(n)=if(n<2, return(0)); my(c3=n^3); for(a=2, sqrtnint(c3-5, 3), if(ispower(c3-1-a^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Oct 26 2014 (PARI) T=thueinit('x^3+1); is(n)=n>8&&#select(v->min(v, v)>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014 CROSSREFS Cf. A050792, A050793, A050794, A050787, A229383. Sequence in context: A133384 A052067 A307821 * A005771 A016228 A016276 Adjacent sequences:  A050788 A050789 A050790 * A050792 A050793 A050794 KEYWORD nonn,nice AUTHOR Patrick De Geest, Sep 15 1999 EXTENSIONS More terms from Michel ten Voorde Extended through 47584 by Jud McCranie, Dec 25 2000 More terms from Don Reble, Nov 29 2001 Edited by N. J. A. Sloane, May 08 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:20 EDT 2019. Contains 328017 sequences. (Running on oeis4.)