

A050791


Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order.


20



12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that n^3+1 is expressible as the sum of two nonzero cubes (both greater than 1).
Values of z associated with A050794.
Sequence is infinite. One subsequence is (from x = 1 + 9 m^3, y = 9 m^4, z = 3*m*(3*m^3 + 1), x^3 + y^3 = z^3 + 1): z(m) = 3*m*(3*m^3 + 1) = {12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, ...} = a (1, 3, 6, 10, 13, 17, 20, 23, 30, 37, ...).  Zak Seidov, Sep 16 2013
Numbers n such that n^3+1 is a member of A001235.  Altug Alkan, May 09 2016


REFERENCES

Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107124.


LINKS

Lewis Mammel, Table of n, a(n) for n = 1..368
Noam Elkies, Rational points near curves and small nonzero x^3y^2 via lattice reduction, arXiv:math/0005139 [math.NT], 2000.
S. Ramanujan, Question 681, J. Ind. Math. Soc.
Eric Weisstein's World of Mathematics, Diophantine Equation  3rd Powers


EXAMPLE

12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729).
2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.


MATHEMATICA

r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* JeanFrançois Alcover, Dec 27 2011 *)


PROG

(PARI) is(n)=if(n<2, return(0)); my(c3=n^3); for(a=2, sqrtnint(c35, 3), if(ispower(c31a^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Oct 26 2014
(PARI) T=thueinit('x^3+1); is(n)=n>8&&#select(v>min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014


CROSSREFS

Cf. A050792, A050793, A050794, A050787, A229383.
Sequence in context: A133384 A052067 A307821 * A005771 A016228 A016276
Adjacent sequences: A050788 A050789 A050790 * A050792 A050793 A050794


KEYWORD

nonn,nice


AUTHOR

Patrick De Geest, Sep 15 1999


EXTENSIONS

More terms from Michel ten Voorde
Extended through 47584 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007


STATUS

approved



