

A050793


Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1<x<y<z) or 'Fermat near misses'. Arrange solutions by increasing values of z (see A050791), and increasing values of y in case of ties. Sequence gives values of y.


6



10, 94, 144, 235, 438, 729, 1537, 1738, 1897, 2304, 3518, 4528, 5625, 8343, 9036, 9735, 11664, 11468, 19386, 21609, 31180, 35442, 36864, 33412, 38782, 35385, 41167, 44521, 51762, 59049, 50920, 72629, 76903, 83692, 67402, 80020, 90000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Values of y associated with A050794.


REFERENCES

Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107124.


LINKS

Lewis Mammel, Table of n, a(n) for n = 1..368
Eric Weisstein's World of Mathematics, Diophantine Equation  3rd Powers


EXAMPLE

For the 10th term where y is 2304, 577^3 + 2304^3 = 2316^3 + 1.


CROSSREFS

Cf. A050791, A050792, A050794.
Sequence in context: A192901 A192902 A192903 * A281203 A126633 A125422
Adjacent sequences: A050790 A050791 A050792 * A050794 A050795 A050796


KEYWORD

nonn


AUTHOR

Patrick De Geest, Sep 15 1999


EXTENSIONS

More terms from Michel ten Voorde; no more with z<8192.
Extended through 44521 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007


STATUS

approved



