

A050793


Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1<x<y<z) or 'Fermat near misses'. Arrange solutions by increasing values of z (see A050791), and increasing values of y in case of ties. Sequence gives values of y.


6



10, 94, 144, 235, 438, 729, 1537, 1738, 1897, 2304, 3518, 4528, 5625, 8343, 9036, 9735, 11664, 11468, 19386, 21609, 31180, 35442, 36864, 33412, 38782, 35385, 41167, 44521, 51762, 59049, 50920, 72629, 76903, 83692, 67402, 80020, 90000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Values of y associated with A050794.


REFERENCES

Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107124.


LINKS



EXAMPLE

For the 10th term where y is 2304, 577^3 + 2304^3 = 2316^3 + 1.


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



