OFFSET
1,2
COMMENTS
Analogous solutions exist for the sum of two identical squares z^2 + 1 = 2*r^2 (e.g., 41^2 + 1 = 2*29^2). Values of 'z' are the terms in sequence A002315, values of 'r' are the terms in sequence A001653.
Apart from the first term, numbers n such that (n^2)! == 0 mod (n^2 + 1)^2. - Michel Lagneau, Feb 14 2012
Numbers n such that neither n^2 + 1 nor (n^2 + 1)/2 is prime. - Charles R Greathouse IV, Feb 14 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
E.g., 57^2 + 1 = 15^2 + 55^2 = 21^2 + 53^2 = 35^2 + 45^2.
MATHEMATICA
t={1}; Do[i=c=2; While[i<n&&c!=0, If[IntegerQ[Sqrt[n^2+1-i^2]], c=0; AppendTo[t, n]]; i++], {n, 3, 107}]; t (* Jayanta Basu, Jun 01 2013 *)
PROG
(PARI) is(n)=!isprime((n^2+1)/if(n%2, 2, 1)) \\ Charles R Greathouse IV, Feb 14 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Sep 15 1999
STATUS
approved