login
A050796
Numbers n such that n^2 + 1 is expressible as the sum of two nonzero squares in at least one way (the trivial solution n^2 + 1 = n^2 + 1^2 is not counted).
11
1, 7, 8, 12, 13, 17, 18, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 37, 38, 41, 42, 43, 44, 46, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107
OFFSET
1,2
COMMENTS
Analogous solutions exist for the sum of two identical squares z^2 + 1 = 2*r^2 (e.g., 41^2 + 1 = 2*29^2). Values of 'z' are the terms in sequence A002315, values of 'r' are the terms in sequence A001653.
Apart from the first term, numbers n such that (n^2)! == 0 mod (n^2 + 1)^2. - Michel Lagneau, Feb 14 2012
Numbers n such that neither n^2 + 1 nor (n^2 + 1)/2 is prime. - Charles R Greathouse IV, Feb 14 2012
EXAMPLE
E.g., 57^2 + 1 = 15^2 + 55^2 = 21^2 + 53^2 = 35^2 + 45^2.
MATHEMATICA
t={1}; Do[i=c=2; While[i<n&&c!=0, If[IntegerQ[Sqrt[n^2+1-i^2]], c=0; AppendTo[t, n]]; i++], {n, 3, 107}]; t (* Jayanta Basu, Jun 01 2013 *)
PROG
(PARI) is(n)=!isprime((n^2+1)/if(n%2, 2, 1)) \\ Charles R Greathouse IV, Feb 14 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Sep 15 1999
STATUS
approved