login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016228 Expansion of 1/((1-x)*(1-5*x)(1-6*x)). 3
1, 12, 103, 774, 5425, 36456, 238267, 1527258, 9651829, 60352380, 374321311, 2306963022, 14146953913, 86407602384, 526075008835, 3194597025666, 19358317017277, 117103576420068, 707389830102439, 4268180838524790, 25728294320699521, 154965812371951032 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..21.

Index entries for linear recurrences with constant coefficients, signature (12,-41,30).

FORMULA

a(n) = (1/20)-(25/4)*5^n+(36/5)*6^n. [Antonio Alberto Olivares, Feb 06 2010]

a(0)=1, a(1)=12, a(n)=11*a(n-1)-30*a(n-2)+1. - Vincenzo Librandi, Feb 10 2011

MAPLE

a:=n->sum(6^(n-j)-5^(n-j), j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 15 2007

MATHEMATICA

Table[(2^(n + 3)*3^(n + 1) - 5^(n + 2) + 1)/20, {n, 40}] (* and *) CoefficientList[Series[1/((1 - z) (1 - 5*z) (1 - 6*z)), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)

LinearRecurrence[{12, -41, 30}, {1, 12, 103}, 30] (* Harvey P. Dale, Aug 24 2017 *)

PROG

(PARI) Vec(1/((1-x)*(1-5*x)(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A016218.

Sequence in context: A307821 A050791 A005771 * A016276 A264452 A078397

Adjacent sequences:  A016225 A016226 A016227 * A016229 A016230 A016231

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 05:51 EST 2020. Contains 338944 sequences. (Running on oeis4.)