login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059418
Triangle T(n,k) arising from enumeration of permutations with ordered orbits, read by rows (1<=k<=n).
1
1, 1, 1, 3, 2, 1, 12, 7, 4, 1, 60, 33, 19, 7, 1, 360, 192, 109, 47, 11, 1, 2520, 1320, 737, 344, 102, 16, 1, 20160, 10440, 5742, 2801, 956, 198, 22, 1, 181440, 93240, 50634, 25349, 9493, 2342, 352, 29, 1, 1814400, 927360, 498312, 253426, 101293, 28229
OFFSET
1,4
COMMENTS
From Peter Bala, Jul 08 2012: (Start)
A non-plane recursive tree is a rooted labeled plane tree (the children of a node are not ordered) with the property that the labels increase along any path from the root to a leaf. T(n,k) counts the total number of vertices of outdegree k among the set of n! non-plane recursive trees on n+1 vertices. An example is given below.
(End)
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 258, #10, F(n,k).
FORMULA
T(n, k) = (n-2)*T(n-1, k) + T(n-1, k-1), T(n, 1)=n!/2, T(n, n)=1.
From Peter Bala, Jul 08 2012: (Start)
E.g.f.: A(x,z) = x/(2-x){1/(1-z) - 1/(1-z)^(x-1)} = x*z + (x+x^2)*z^2/2! + (3*x+2*x^2+x^3)*z^3/3! + ....
A(x+1,z) is an e.g.f. for the row reverse of A109822 and A(x+2,z) generates the triangle of unsigned Stirling numbers of the first kind A130534 but with the first column omitted.
E.g.f. for column k: 1/(2^k*(1-x)) + (x-1)*sum {j = 0..k-1} 1/(j!*2^(k-j))*log^j(1/(1-x)) - see Drmota.
The row polynomial R(n,x) satisfies the recurrence equation R(n,x) = (x+n-2)*R(n-1,x) + (n-1)!*x with R(1,x) = x and also the recurrence R(n,x) = (x+2*n-3)*R(n-1,x) - (n-1)*(x+n-3)*R(n-2,x) with R(1,x) = x and R(2,x) = x+x^2. R(n,x) = {(x-1)*x*(x+1)*...*(x+n-2) - n!}/(x-2).
(End)
EXAMPLE
1; 1,1; 3,2,1; 12,7,4,1; 60,33,19,7,1; ...
Row 3: [12,7,4,1]. There are 6 non-plane recursive trees on 4 nodes.
The total number of nodes of outdegree 0 = 1+2+2+2+2+3 = 12;
The total number of nodes of outdegree 1 = 3+1+1+1+1 = 7;
The total number of nodes of outdegree 2 = 1+1+1+1 = 4;
The total number of nodes of outdegree 3 = 1;
...................................................................
.0o......0o..........0o..........0o.........0o...........0o........
..|.......|........../.\........./.\......../.\........../|\.......
..|.......|........./...\......./...\....../...\......../.|.\......
.1o......1o.......1o.....o3...1o....o2...2o.....o1...../..|..\.....
..|....../.\.......|...........|..........|..........1o..2o...o3...
..|...../...\......|...........|..........|........................
.2o...2o.....o3...2o..........3o.........3o........................
..|................................................................
..|................................................................
.3o................................................................
....................................... - Peter Bala, Jul 08 2012
MATHEMATICA
t[n_, k_] := (n - 2)*t[n - 1, k] + t[n - 1, k - 1]; t[n_, n_] := 1; t[n_, 1] = n!/2; Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Jul 08 2012 *)
CROSSREFS
Diagonals give A001710, A006595. A109822, A130534.
Sequence in context: A118435 A115085 A110616 * A092582 A213262 A280512
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Jan 30 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
STATUS
approved