login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115085
Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n-1 from T(n-1,k) to T(n-1,n-1) with the vector of terms in column k+1 from T(k+1,k+1) to T(n,k+1): T(n,k) = Sum_{j=0..n-k-1} T(n-1,j+k)*T(j+k+1,k+1) for n>k+1>0, with T(n,n) = 1 and T(n,n-1) = n (n>=1).
6
1, 1, 1, 3, 2, 1, 12, 5, 3, 1, 58, 21, 7, 4, 1, 321, 102, 32, 9, 5, 1, 1963, 579, 158, 45, 11, 6, 1, 13053, 3601, 933, 226, 60, 13, 7, 1, 92946, 24426, 5939, 1395, 306, 77, 15, 8, 1, 702864, 176858, 41385, 9097, 1977, 398, 96, 17, 9, 1, 5599204, 1359906, 306070
OFFSET
0,4
COMMENTS
Triangle A115080 is the dual of this triangle.
EXAMPLE
T(n,k)=[T(n-1,k),T(n-1,k+1),..,T(n-1,n-1)]*[T(k+1,k+1),T(k+2,k+1),..,T(n,k+1)]:
12 = [3,2,1]*[1,2,5] = 3*1 + 2*2 + 1*5;
21 = [5,3,1]*[1,3,7] = 5*1 + 3*3 + 1*7;
102 = [21,7,4,1]*[1,3,7,32] = 21*1 + 7*3 + 4*7 + 1*32;
158 = [32,9,5,1]*[1,4,9,45] = 32*1 + 9*4 + 5*9 + 1*45.
Triangle begins:
1;
1, 1;
3, 2, 1;
12, 5, 3, 1;
58, 21, 7, 4, 1;
321, 102, 32, 9, 5, 1;
1963, 579, 158, 45, 11, 6, 1;
13053, 3601, 933, 226, 60, 13, 7, 1;
92946, 24426, 5939, 1395, 306, 77, 15, 8, 1;
702864, 176858, 41385, 9097, 1977, 398, 96, 17, 9, 1;
5599204, 1359906, 306070, 65310, 13195, 2691, 502, 117, 19, 10, 1;
46746501, 10996740, 2403792, 494022, 97701, 18353, 3549, 618, 140, 21, 11, 1;
407019340, 93136545, 19799468, 3970878, 755834, 140178, 24691, 4563, 746, 165, 23, 12, 1; ...
PROG
(PARI) {T(n, k)=if(n==k, 1, if(n==k+1, n, sum(j=0, n-k-1, T(n-1, j+k)*T(j+k+1, k+1))))}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A115086 (column 0), A115087 (column 1), A115088 (column 2), A115089 (row sums); A115080 (dual triangle).
Sequence in context: A123513 A117442 A118435 * A110616 A059418 A092582
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 13 2006
STATUS
approved