Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 21 2015 01:16:41
%S 1,1,1,3,2,1,12,5,3,1,58,21,7,4,1,321,102,32,9,5,1,1963,579,158,45,11,
%T 6,1,13053,3601,933,226,60,13,7,1,92946,24426,5939,1395,306,77,15,8,1,
%U 702864,176858,41385,9097,1977,398,96,17,9,1,5599204,1359906,306070
%N Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n-1 from T(n-1,k) to T(n-1,n-1) with the vector of terms in column k+1 from T(k+1,k+1) to T(n,k+1): T(n,k) = Sum_{j=0..n-k-1} T(n-1,j+k)*T(j+k+1,k+1) for n>k+1>0, with T(n,n) = 1 and T(n,n-1) = n (n>=1).
%C Triangle A115080 is the dual of this triangle.
%H Paul D. Hanna, <a href="/A115085/b115085.txt">Table of n, a(n) for n = 0..405, as a flattened triangle of rows 0..27.</a>
%e T(n,k)=[T(n-1,k),T(n-1,k+1),..,T(n-1,n-1)]*[T(k+1,k+1),T(k+2,k+1),..,T(n,k+1)]:
%e 12 = [3,2,1]*[1,2,5] = 3*1 + 2*2 + 1*5;
%e 21 = [5,3,1]*[1,3,7] = 5*1 + 3*3 + 1*7;
%e 102 = [21,7,4,1]*[1,3,7,32] = 21*1 + 7*3 + 4*7 + 1*32;
%e 158 = [32,9,5,1]*[1,4,9,45] = 32*1 + 9*4 + 5*9 + 1*45.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 3, 2, 1;
%e 12, 5, 3, 1;
%e 58, 21, 7, 4, 1;
%e 321, 102, 32, 9, 5, 1;
%e 1963, 579, 158, 45, 11, 6, 1;
%e 13053, 3601, 933, 226, 60, 13, 7, 1;
%e 92946, 24426, 5939, 1395, 306, 77, 15, 8, 1;
%e 702864, 176858, 41385, 9097, 1977, 398, 96, 17, 9, 1;
%e 5599204, 1359906, 306070, 65310, 13195, 2691, 502, 117, 19, 10, 1;
%e 46746501, 10996740, 2403792, 494022, 97701, 18353, 3549, 618, 140, 21, 11, 1;
%e 407019340, 93136545, 19799468, 3970878, 755834, 140178, 24691, 4563, 746, 165, 23, 12, 1; ...
%o (PARI) {T(n,k)=if(n==k,1,if(n==k+1,n, sum(j=0,n-k-1,T(n-1,j+k)*T(j+k+1,k+1))))}
%o for(n=0,12,for(k=0,n, print1(T(n,k),", "));print(""))
%Y Cf. A115086 (column 0), A115087 (column 1), A115088 (column 2), A115089 (row sums); A115080 (dual triangle).
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Jan 13 2006