login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117442
Number triangle read by rows, related to exp(x)/(cos(x) + sin(x)).
4
1, -1, 1, 3, -2, 1, -11, 9, -3, 1, 57, -44, 18, -4, 1, -361, 285, -110, 30, -5, 1, 2763, -2166, 855, -220, 45, -6, 1, -24611, 19341, -7581, 1995, -385, 63, -7, 1, 250737, -196888, 77364, -20216, 3990, -616, 84, -8, 1, -2873041, 2256633, -885996, 232092, -45486, 7182, -924, 108, -9, 1
OFFSET
0,4
FORMULA
T(n, 0) = (-1)^n*A001586(n).
Sum_{k=0..n} T(n, k) = A117443(n).
Column k has e.g.f. (x^k/k!)/(cos(x) + sin(x)).
Apart from signs the T(n,k) are the coefficients of the polynomials p(n, x) = 2^n*Sum_{k=0..n} binomial(n,k)*euler(k)*((x+1)/2)^(n-k). - Peter Luschny, Jun 08 2013
From G. C. Greubel, Jun 02 2021: (Start)
T(n, k) = (-1)^(n+k) * binomial(n, k) * abs(numerator( Euler(n-k, 1/4) )), where Euler(n, x) is the Euler number polynomial.
T(n, n) = 1.
T(n, n-1) = -A000027(n) = -binomial(n+1, 1).
T(n, n-2) = A045943(n+1) = 3*binomial(n+2, 2).
T(n, n-3) = -A111080(n) = -11*binomial(n+3, 3).
T(j, k) = (-1)^k * binomial(j+k, k) * abs(numerator( Euler(k, 1/4) )) (columns).
T(n, n-j) = (-1)^n * binomial(n+j, j) * abs(numerator( Euler(n, 1/4) )) (downward diagonals). (End)
The pair of triangles P*((I + P^4)/2)^(-1) and P^3*((I + P^4)/2)^(-1), where P denotes Pascal's triangle A007318, give the present triangle but with a different pattern of signs. - Peter Bala, Mar 07 2024
EXAMPLE
Triangle begins
1;
-1, 1;
3, -2, 1;
-11, 9, -3, 1;
57, -44, 18, -4, 1;
-361, 285, -110, 30, -5, 1;
2763, -2166, 855, -220, 45, -6, 1;
-24611, 19341, -7581, 1995, -385, 63, -7, 1;
MAPLE
A117442_row := proc(n) 2^n*add(binomial(n, k)*euler(k)*((x+1)/2)^(n-k), k=0..n);
seq((-1)^(n-j)*abs(coeff(%, x, j)), j=0..n) end:
seq(print(A117442_row(n)), n=0..5); # Peter Luschny, Jun 08 2013
MATHEMATICA
row[n_] := row[n] = 2^n Sum[Binomial[n, k] EulerE[k] ((x+1)/2)^(n-k), {k, 0, n}];
T[n_, k_] := (-1)^(n-k) Abs[Coefficient[row[n], x, k]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019, from Maple *)
Table[(-1)^(n-k)*Binomial[n, k]*Abs[Numerator[EulerE[n-k, 1/4]]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 02 2021 *)
PROG
(PARI) E(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1); \\ A122045
p(n) = 2^n*sum(k=0, n, binomial(n, k)*E(k)*((x+1)/2)^(n-k));
row(n) = my(rp=p(n)); vector(n+1, k, k--; (-1)^(n-k)*abs(polcoeff(rp, k))); \\ Michel Marcus, Nov 16 2020
(Sage)
def f(n): return (1/4)^n*sum( binomial(n, j)*2^j*euler_number(j) for j in (0..n)) # f(n) = Euler(n, 1/4)
def A117442(n, k): return (-1)^(n+k)*binomial(n, k)*abs(numerator(f(n-k)))
flatten([[A117442(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 02 2021
CROSSREFS
Inverse of A117440.
Second column contains A161722 as subsequence.
Sequence in context: A222730 A104219 A123513 * A118435 A115085 A110616
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved