login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117441
Periodic with repeating part {1,1,0,1,-1,0,-1,-1,0,-1,1,0}.
4
1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0
OFFSET
0,1
COMMENTS
Diagonal sums of number triangle A117440.
FORMULA
G.f.: (1+x-x^2)/(1-x^2+x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(cos(Pi*(n-2*k)/2)+sin(Pi*(n-2*k)/2)).
a(1)=a(2)=1; a(n) = a(n-2) + (-1)^n*a(n-1). - José María Grau Ribas, Jan 08 2012
a(n) = A260190(n+2) = A260192(n-1). a(2*n + 1) = A010892(n). a(3*n) = A057077(n). a(3*n + 1) = A087960(n). a(3*n + 2) = 0. - Michael Somos, Jul 18 2015
EXAMPLE
G.f. = 1 + x + x^3 - x^4 - x^6 - x^7 - x^9 + x^10 + x^12 + x^13 + x^15 + ...
MATHEMATICA
a[1] := 1; a[2] := 1; a[n_] := a[n] = a[n - 2] + (-1)^(n) a[n - 1]; Array[a, 100] (* José María Grau Ribas, Jan 08 2012 *)
PadRight[{}, 84, {1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0}] (* Harvey P. Dale, Mar 30 2012 *)
a[ n_] := KroneckerSymbol[ -6, 2 n + 5]; (* Michael Somos, Jul 18 2015 *)
LinearRecurrence[{0, 1, 0, -1}, {1, 1, 0, 1}, 78] (* Ray Chandler, Aug 25 2015 *)
PROG
(PARI) Vec((1+x-x^2)/(1-x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2012
(PARI) {a(n) = kronecker( -6, 2*n + 5)}; /* Michael Somos, Jul 18 2015 */
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 16 2006
EXTENSIONS
More terms from Sean A. Irvine, Sep 26 2011
STATUS
approved