login
A091338
a(n) = (3/n), where (k/n) is the Kronecker symbol.
9
1, -1, 0, 1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0
OFFSET
1,1
COMMENTS
a(2n+1) has period 6, i.e., if n == 1 (mod 2) then a(n+12) = a(n). A.H.M. Smeets, Jan 23 2018
LINKS
Jean-Paul Allouche, Leo Goldmakher, Mock characters and the Kronecker symbol, arXiv:1608.03957 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Kronecker Symbol
FORMULA
If n==0 (mod 3) a(n)=0; for p ==1 or 11 (mod 12) (i.e., p>3 in A038874), a(p)=+1; for p==2, 5 or 7 (mod 12) (i.e., p in A038875), a(p)=-1. - Benoit Cloitre, Jan 03 2004
From A.H.M. Smeets, Aug 01 2018: (Start)
Conjecture:
a(n) = 0 if and only if (n mod 3 = 0),
a(n) = 1 if (n mod 12 = 1 or n mod 12 = 11 or n mod 48 = 4 or n mod 48 = 44),
a(n) = -1 if (n mod 12 = 5 or n mod 12 = 7 or n mod 48 = 20 or n mod 48 = 28),
a(2) = -1, a(12*n+10) = -a(12*n+2) and a(12*n+14) = a(12*n+10) for n >= 0,
a(24*n+8) = -a(12*n+4) and a(24*n+16) = -a(12*n+4) for n >= 0. (End)
From A.H.M. Smeets, Aug 01 2018: (Start)
a(2*n+1) = 1 if and only if (n mod 6 = 0 or n mod 6 = 5),
a(2*n+1) = -1 if and only if (n mod 6 = 2 or n mod 6 = 3),
a(2*n+1) = 0 if and only if n mod 3 = 1,
a(2*n) = -a(n). (End)
MAPLE
A091338 := proc(n)
numtheory[jacobi](3, n) ;
end proc: # R. J. Mathar, Nov 03 2011
MATHEMATICA
Table[KroneckerSymbol[3, n], {n, 1, 100}] (* Vincenzo Librandi, Aug 16 2016 *)
PROG
(PARI) a(n)=kronecker(3, n)
(Magma) [KroneckerSymbol(3, n): n in [1..100]]; // Vincenzo Librandi, Aug 16 2016
CROSSREFS
Sequence in context: A117441 A049347 A010892 * A359378 A016345 A016148
KEYWORD
sign,mult
AUTHOR
Eric W. Weisstein, Dec 30 2003
EXTENSIONS
More terms from Benoit Cloitre, Jan 03 2004
STATUS
approved