login
A359378
Dirichlet inverse of A359377, where A359377(n) = 1 if 3*n is squarefree, otherwise 0.
9
1, -1, 0, 1, -1, 0, -1, -1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, 1, -1, 0, 1, -1, 0, -1, -1, 0, 1, 1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0, -1, -1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, 1, -1, 0, 1, -1, 0, 1, 1, 0, -1, -1, 0, 1, -1, 0, -1, 1, 0, 1
OFFSET
1
COMMENTS
Note the correspondences between four sequences:
A156277 --- abs ---> A359377
^ ^
| |
inv inv
| |
v v
A011655 <--- abs --- A359378 (this sequence)
Here inv means that the sequences are Dirichlet Inverses of each other, and abs means taking absolute values.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359377(n/d) * a(d).
Multiplicative with a(3^e) = 0 and a(p^k) = (-1)^k for all primes p <> 3.
a(n) = A359170(n) - A359172(n).
For all n >= 1, a(A001651(n)) = A008836(A001651(n)).
Dirichlet g.f.: 3^s/((3^s-1)*zeta(s)). - Amiram Eldar, Jan 03 2023
MATHEMATICA
f[p_, e_] := (-1)^e; f[3, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
PROG
(PARI) A359378(n) = { my(f = factor(n)); prod(k=1, #f~, (3!=f[k, 1])*((-1)^f[k, 2])); };
CROSSREFS
Cf. A001651, A008836, A011655 (absolute values), A156277 (Dirichlet inverse of the absolute values), A359377 (Dirichlet inverse).
Cf. A008585 (after its initial term gives the positions of 0's), A359171 (of positive terms), A359381 (of negative terms), A359170, A359172.
Cf. also A166698, A358839.
Sequence in context: A049347 A010892 A091338 * A016345 A016148 A016333
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Dec 29 2022
STATUS
approved