login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166698 Totally multiplicative sequence with a(p) = a(p-1) - 1 for prime p. 1
1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

FORMULA

Multiplicative with a(p^e) = (a(p-1)-1)^e.

If n = Product p(k)^e(k) then a(n) = Product (a(p(k)-1)-1)^e(k).

Multiplicative with a(p^e) = 0 if p = 2, with a(p^e) = 1 if p > 2 and e is even, with a(p^e) = -1 if p > 2 and e is odd.

a(p) = -1 for prime p > 2.

a(1) = 1, for k >= 1: a(2k) = 0, a(2k - 1) = 1 if A001222(2k - 1) is even, a(2k - 1) = -1 if A001222(2k - 1) is odd, where A001222(n) = bigomega(n).

Sum_{d|n} a(d) * A000012(d) = Sum_{d|n} a(d) * A000012(d/n) = A053866(n) = A093709(n) for n>= 1.

a(n) = A000035(n) * A008836(n). - Antti Karttunen, Sep 14 2017

PROG

(Scheme, with memoization-macro) (definec (A166698 n) (if (= 1 n) n (* (+ -1 (A166698 (+ -1 (A020639 n)))) (A166698 (A032742 n))))) ;; Antti Karttunen, Sep 14 2017

CROSSREFS

Cf. A000035 (gives the absolute values), A001222, A008836.

Sequence in context: A056594 A101455 A091337 * A250299 A193497 A260390

Adjacent sequences:  A166695 A166696 A166697 * A166699 A166700 A166701

KEYWORD

sign,mult

AUTHOR

Jaroslav Krizek, Oct 18 2009

EXTENSIONS

More terms from Antti Karttunen, Sep 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:48 EST 2019. Contains 329809 sequences. (Running on oeis4.)