login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374134
a(n) = 1 if 2*phi(n) > n, otherwise 0, where phi is Euler's totient function phi, A000010.
3
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
OFFSET
1
FORMULA
a(n) = [A083254(n) > 0], where [ ] is the Iverson bracket.
a(2*k) = 0 for k >= 1. - Paolo Xausa, Jul 08 2024
MATHEMATICA
Array[Boole[2*EulerPhi[#] > #] &, 100] (* Paolo Xausa, Jul 08 2024 *)
PROG
(PARI) A374134(n) = ((2*eulerphi(n))>n);
(Python)
from sympy import totient
def A374134(n): return int(totient(n)<<1>n) # Chai Wah Wu, Oct 27 2024
CROSSREFS
Characteristic function of A089684.
Cf. A000010, A083254, A318874 (inverse Möbius transform), A323170.
Differs from A000035 first at n=105, where a(105) = 0, while A000035(105) = 1.
Differs from A374136 first at n=255, where a(255) = 1, while A374136(255) = 0.
Sequence in context: A015757 A059841 A056594 * A374136 A166698 A250299
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 06 2024
STATUS
approved