login
A374134
a(n) = 1 if 2*phi(n) > n, otherwise 0, where phi is Euler's totient function phi, A000010.
3
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
OFFSET
1
FORMULA
a(n) = [A083254(n) > 0], where [ ] is the Iverson bracket.
a(2*k) = 0 for k >= 1. - Paolo Xausa, Jul 08 2024
MATHEMATICA
Array[Boole[2*EulerPhi[#] > #] &, 100] (* Paolo Xausa, Jul 08 2024 *)
PROG
(PARI) A374134(n) = ((2*eulerphi(n))>n);
(Python)
from sympy import totient
def A374134(n): return int(totient(n)<<1>n) # Chai Wah Wu, Oct 27 2024
CROSSREFS
Characteristic function of A089684.
Cf. A000010, A083254, A318874 (inverse Möbius transform), A323170.
Differs from A000035 first at n=105, where a(105) = 0, while A000035(105) = 1.
Differs from A374136 first at n=255, where a(255) = 1, while A374136(255) = 0.
Sequence in context: A015757 A059841 A056594 * A374136 A166698 A250299
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 06 2024
STATUS
approved