login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117439
Expansion of (1-x^2)/(1 -4*x -2*x^2 +x^4).
2
1, 4, 17, 76, 337, 1496, 6641, 29480, 130865, 580924, 2578785, 11447508, 50816737, 225581040, 1001378849, 4445229968, 19732860833, 87596322228, 388849631729, 1726145941404, 7662550168241, 34014896233544, 150995835638929, 670286989081400, 2975477077435217, 13208467391670124, 58633827885912001, 260281959337906852
OFFSET
0,2
COMMENTS
Row sums of unsigned version of number triangle A117438.
FORMULA
a(n) = 4*a(n-1) + 2*a(n-2) - a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k) * 4^(n-2*k).
MATHEMATICA
LinearRecurrence[{4, 2, 0, -1}, {1, 4, 17, 76}, 40] (* G. C. Greubel, Jun 01 2021 *)
PROG
(Magma) I:=[1, 4, 17, 76]; [n le 4 select I[n] else 4*Self(n-1) +2*Self(n-2) -Self(n-4): n in [1..41]]; // G. C. Greubel, Jun 01 2021
(Sage)
def A117439_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)/(1-4*x-2*x^2+x^4) ).list()
A117439_list(40) # G. C. Greubel, Jun 01 2021
CROSSREFS
Cf. A117438.
Sequence in context: A255714 A151247 A290914 * A081910 A026773 A081186
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 16 2006
EXTENSIONS
Terms a(23) onward added by G. C. Greubel, Jun 01 2021
STATUS
approved