login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117436
Triangle related to exp(x)*sec(2*x).
3
1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 80, 0, 24, 0, 1, 0, 400, 0, 40, 0, 1, 3904, 0, 1200, 0, 60, 0, 1, 0, 27328, 0, 2800, 0, 84, 0, 1, 354560, 0, 109312, 0, 5600, 0, 112, 0, 1, 0, 3191040, 0, 327936, 0, 10080, 0, 144, 0, 1, 51733504, 0, 15955200, 0, 819840, 0, 16800, 0, 180, 0, 1
OFFSET
0,4
COMMENTS
Inverse is A117435.
Conjecture: The d-th diagonal (starting with d=0) is proportional to the sequence of generalized binomial coefficients binomial(-x, d) where x is the column index. - Søren G. Have, Feb 26 2017
FORMULA
Number triangle whose k-th column has e.g.f. (x^k/k!)*sec(2*x).
T(n, 0) = A002436(n).
Sum_{k=0..n} T(n, k) = A117437(n).
T(n, k) = binomial(n,k) * (2*i)^(n-k) * E(n-k), where E(n) are the Euler numbers with E(2*n) = A000364(n) and E(2*n+1) = 0. - G. C. Greubel, Jun 01 2021
EXAMPLE
Triangle begins as:
1;
0, 1;
4, 0, 1;
0, 12, 0, 1;
80, 0, 24, 0, 1;
0, 400, 0, 40, 0, 1;
3904, 0, 1200, 0, 60, 0, 1;
0, 27328, 0, 2800, 0, 84, 0, 1;
354560, 0, 109312, 0, 5600, 0, 112, 0, 1;
0, 3191040, 0, 327936, 0, 10080, 0, 144, 0, 1;
51733504, 0, 15955200, 0, 819840, 0, 16800, 0, 180, 0, 1;
MATHEMATICA
T[n_, k_]:= Binomial[n, k]*(2*I)^(n-k)*EulerE[n-k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
PROG
(Sage) flatten([[binomial(n, k)*(2*i)^(n-k)*euler_number(n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021
CROSSREFS
Cf. A000364, A002436 (1st column), A117435 (inverse), A117437 (row sums).
Sequence in context: A117435 A282252 A268367 * A136448 A166318 A166317
KEYWORD
nonn,tabl
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved