Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 02 2021 22:17:08
%S 1,0,1,4,0,1,0,12,0,1,80,0,24,0,1,0,400,0,40,0,1,3904,0,1200,0,60,0,1,
%T 0,27328,0,2800,0,84,0,1,354560,0,109312,0,5600,0,112,0,1,0,3191040,0,
%U 327936,0,10080,0,144,0,1,51733504,0,15955200,0,819840,0,16800,0,180,0,1
%N Triangle related to exp(x)*sec(2*x).
%C Inverse is A117435.
%C Conjecture: The d-th diagonal (starting with d=0) is proportional to the sequence of generalized binomial coefficients binomial(-x, d) where x is the column index. - _Søren G. Have_, Feb 26 2017
%H G. C. Greubel, <a href="/A117436/b117436.txt">Rows n = 0..50 of the triangle, flattened</a>
%F Number triangle whose k-th column has e.g.f. (x^k/k!)*sec(2*x).
%F T(n, 0) = A002436(n).
%F Sum_{k=0..n} T(n, k) = A117437(n).
%F T(n, k) = binomial(n,k) * (2*i)^(n-k) * E(n-k), where E(n) are the Euler numbers with E(2*n) = A000364(n) and E(2*n+1) = 0. - _G. C. Greubel_, Jun 01 2021
%e Triangle begins as:
%e 1;
%e 0, 1;
%e 4, 0, 1;
%e 0, 12, 0, 1;
%e 80, 0, 24, 0, 1;
%e 0, 400, 0, 40, 0, 1;
%e 3904, 0, 1200, 0, 60, 0, 1;
%e 0, 27328, 0, 2800, 0, 84, 0, 1;
%e 354560, 0, 109312, 0, 5600, 0, 112, 0, 1;
%e 0, 3191040, 0, 327936, 0, 10080, 0, 144, 0, 1;
%e 51733504, 0, 15955200, 0, 819840, 0, 16800, 0, 180, 0, 1;
%t T[n_, k_]:= Binomial[n, k]*(2*I)^(n-k)*EulerE[n-k];
%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 01 2021 *)
%o (Sage) flatten([[binomial(n,k)*(2*i)^(n-k)*euler_number(n-k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 01 2021
%Y Cf. A000364, A002436 (1st column), A117435 (inverse), A117437 (row sums).
%K nonn,tabl
%O 0,4
%A _Paul Barry_, Mar 16 2006