login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166318
Exponential Riordan array [sech(2x), arctan(tanh(x))].
1
1, 0, 1, -4, 0, 1, 0, -16, 0, 1, 80, 0, -40, 0, 1, 0, 640, 0, -80, 0, 1, -3904, 0, 2800, 0, -140, 0, 1, 0, -49152, 0, 8960, 0, -224, 0, 1, 354560, 0, -319744, 0, 23520, 0, -336, 0, 1, 0, 6225920, 0, -1454080, 0, 53760, 0, -480, 0, 1, -51733504, 0, 54897920, 0
OFFSET
0,4
COMMENTS
Inverse is A166317. Row sums are A012222(n+1). Signed version of A166317.
Also the Bell transform of the sequence a(n) = 2^n*E(n) (E(n) the Euler numbers) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
EXAMPLE
Triangle begins
1,
0, 1,
-4, 0, 1,
0, -16, 0, 1,
80, 0, -40, 0, 1,
0, 640, 0, -80, 0, 1,
-3904, 0, 2800, 0, -140, 0, 1,
0, -49152, 0, 8960, 0, -224, 0, 1,
354560, 0, -319744, 0, 23520, 0, -336, 0, 1,
0, 6225920, 0, -1454080, 0, 53760, 0, -480, 0, 1,
Production matrix is
0, 1,
-4, 0, 1,
0, -12, 0, 1,
16, 0, -24, 0, 1,
0, 80, 0, -40, 0, 1,
-64, 0, 240, 0, -60, 0, 1,
0, -448, 0, 560, 0, -84, 0, 1,
256, 0, -1792, 0, 1120, 0, -112, 0, 1,
0, 2304, 0, -5376, 0, 2016, 0, -144, 0, 1,
-1024, 0, 11520, 0, -13440, 0, 3360, 0, -180, 0, 1
which is the exponential Riordan array [cos(2x),x] minus its top row.
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 2^n*euler(n), 10); # Peter Luschny, Jan 29 2016
MATHEMATICA
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, 2^n EulerE[n]], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
Sequence in context: A268367 A117436 A136448 * A166317 A068346 A348304
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Oct 11 2009
STATUS
approved