login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential Riordan array [sech(2x), arctan(tanh(x))].
1

%I #7 Jun 28 2018 04:43:32

%S 1,0,1,-4,0,1,0,-16,0,1,80,0,-40,0,1,0,640,0,-80,0,1,-3904,0,2800,0,

%T -140,0,1,0,-49152,0,8960,0,-224,0,1,354560,0,-319744,0,23520,0,-336,

%U 0,1,0,6225920,0,-1454080,0,53760,0,-480,0,1,-51733504,0,54897920,0

%N Exponential Riordan array [sech(2x), arctan(tanh(x))].

%C Inverse is A166317. Row sums are A012222(n+1). Signed version of A166317.

%C Also the Bell transform of the sequence a(n) = 2^n*E(n) (E(n) the Euler numbers) without column 0. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016

%e Triangle begins

%e 1,

%e 0, 1,

%e -4, 0, 1,

%e 0, -16, 0, 1,

%e 80, 0, -40, 0, 1,

%e 0, 640, 0, -80, 0, 1,

%e -3904, 0, 2800, 0, -140, 0, 1,

%e 0, -49152, 0, 8960, 0, -224, 0, 1,

%e 354560, 0, -319744, 0, 23520, 0, -336, 0, 1,

%e 0, 6225920, 0, -1454080, 0, 53760, 0, -480, 0, 1,

%e Production matrix is

%e 0, 1,

%e -4, 0, 1,

%e 0, -12, 0, 1,

%e 16, 0, -24, 0, 1,

%e 0, 80, 0, -40, 0, 1,

%e -64, 0, 240, 0, -60, 0, 1,

%e 0, -448, 0, 560, 0, -84, 0, 1,

%e 256, 0, -1792, 0, 1120, 0, -112, 0, 1,

%e 0, 2304, 0, -5376, 0, 2016, 0, -144, 0, 1,

%e -1024, 0, 11520, 0, -13440, 0, 3360, 0, -180, 0, 1

%e which is the exponential Riordan array [cos(2x),x] minus its top row.

%p # The function BellMatrix is defined in A264428.

%p # Adds (1,0,0,0, ..) as column 0.

%p BellMatrix(n -> 2^n*euler(n), 10); # _Peter Luschny_, Jan 29 2016

%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t B = BellMatrix[Function[n, 2^n EulerE[n]], rows = 12];

%t Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)

%K easy,sign,tabl

%O 0,4

%A _Paul Barry_, Oct 11 2009