

A136448


Triangle T(n,k) with the coefficient [x^k] of the polynomial p(n,x) in row n, column k, where p(n,x) = x*p(n1,x)n^2*p(n2,x).


0



1, 0, 1, 4, 0, 1, 0, 13, 0, 1, 64, 0, 29, 0, 1, 0, 389, 0, 54, 0, 1, 2304, 0, 1433, 0, 90, 0, 1, 0, 21365, 0, 4079, 0, 139, 0, 1, 147456, 0, 113077, 0, 9839, 0, 203, 0, 1, 0, 1878021, 0, 443476, 0, 21098, 0, 284, 0, 1, 14745600, 0, 13185721, 0, 1427376, 0, 41398, 0, 384, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Row sums are s(n) = 1, 1, 3, 12, 36, 336, 960, 17424, 44016, 1455360, 2946240,...


LINKS

Table of n, a(n) for n=0..65.


FORMULA

p(0,x)=1; p(1,x)=x; p(n,x) = x*p(n1,x)n^2*p(n2,x). T(n,k) = [x^k] p(n,x), 0<=k<=n.
Row sums satisfy s(n)s(n1)+n^2*s(n2)=0.  R. J. Mathar, Mar 06 2013


EXAMPLE

1;
0,1;
4,0,1;
0,13,0,1;
64,0,29,0,1;
0,389,0,54,0,1;
2304,0,1433,0,90,0,1;
0,21365,0,4079,0,139,0,1;
147456,0,113077,0,9839,0,203,0,1;
0,1878021,0,443476,0,21098,0,284,0,1;
14745600,0,13185721,0,1427376,0,41398,0,384,0,1;


CROSSREFS

Cf. A168559 (first subdiagonal)
Sequence in context: A282252 A268367 A117436 * A166318 A166317 A068346
Adjacent sequences: A136445 A136446 A136447 * A136449 A136450 A136451


KEYWORD

easy,tabl,sign


AUTHOR

Roger L. Bagula, Mar 19 2008


STATUS

approved



