The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136449 Expansions of the characteristic polynomials of certain matrices, see Mathematica code. 0
 1, 1, -1, -4, -1, 1, -27, 10, 4, -1, 256, 43, -42, -4, 1, 3125, -686, -398, 72, 9, -1, -46656, -5885, 5774, 542, -180, -9, 1, -823543, 127282, 86112, -11640, -2460, 264, 16, -1, 16777216, 1692439, -1666738, -138336, 51576, 3100, -520, -16, 1, 387420489, -46044262, -33920458, 3633796, 967479, -88890 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Table of n, a(n) for n=1..51. C. Brezinski, Biorthogonal Polynomials And The Bordering Method For Linear Systems, (1993):http://citeseer.ist.psu.edu/brezinski93biorthogonal.html Eric Weisstein's World of Mathematics, Hankel Matrix. EXAMPLE {1}, {1, -1}, {-4, -1, 1}, {-27, 10,4, -1}, {256, 43, -42, -4, 1}, {3125, -686, -398, 72, 9, -1}, {-46656, -5885, 5774, 542, -180, -9, 1}, {-823543, 127282, 86112, -11640, -2460, 264, 16, -1}, {16777216, 1692439, -1666738, -138336, 51576, 3100, -520, -16, 1}, {387420489, -46044262, -33920458, 3633796, 967479, -88890, -9850, 700, 25, -1}, {-10000000000, -840097729, 829514502, 60334298, -23981636, -1413279, 283290, 11850, -1200, -25, 1} MATHEMATICA H[n_] := Table[Table[If[i + j - 1 > n, 0, i + j - 1], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[H[n], x], x], {n, 1, 10}]]; Flatten[a] CROSSREFS Cf. A000312. Sequence in context: A169654 A357744 A088158 * A209427 A140805 A113370 Adjacent sequences: A136446 A136447 A136448 * A136450 A136451 A136452 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Mar 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 01:41 EDT 2024. Contains 374441 sequences. (Running on oeis4.)