login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209427
T(n,k) = binomial(n,k)^n.
4
1, 1, 1, 1, 4, 1, 1, 27, 27, 1, 1, 256, 1296, 256, 1, 1, 3125, 100000, 100000, 3125, 1, 1, 46656, 11390625, 64000000, 11390625, 46656, 1, 1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1, 1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1
OFFSET
0,5
COMMENTS
Row sums equals A167010.
Column 1 forms A000312.
Antidiagonal sums form A209428.
LINKS
EXAMPLE
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 27, 27, 1;
1, 256, 1296, 256, 1;
1, 3125, 100000, 100000, 3125, 1;
1, 46656, 11390625, 64000000, 11390625, 46656, 1;
1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1;
1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1; ...
MATHEMATICA
Table[Binomial[n, k]^n, {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 03 2018 *)
PROG
(PARI) {T(n, k)=binomial(n, k)^n}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A167010 (row sums), A000312 (column 1), A209428.
Sequence in context: A357744 A088158 A136449 * A140805 A113370 A078536
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 08 2012
STATUS
approved