login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = binomial(n,k)^n.
4

%I #16 Jan 03 2018 21:58:10

%S 1,1,1,1,4,1,1,27,27,1,1,256,1296,256,1,1,3125,100000,100000,3125,1,1,

%T 46656,11390625,64000000,11390625,46656,1,1,823543,1801088541,

%U 64339296875,64339296875,1801088541,823543,1,1,16777216,377801998336,96717311574016,576480100000000,96717311574016,377801998336,16777216,1

%N T(n,k) = binomial(n,k)^n.

%C Row sums equals A167010.

%C Column 1 forms A000312.

%C Antidiagonal sums form A209428.

%H Paul D. Hanna, <a href="/A209427/b209427.txt">Rows n = 0..30, flattened.</a>

%e This triangle begins:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 27, 27, 1;

%e 1, 256, 1296, 256, 1;

%e 1, 3125, 100000, 100000, 3125, 1;

%e 1, 46656, 11390625, 64000000, 11390625, 46656, 1;

%e 1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1;

%e 1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1; ...

%t Table[Binomial[n,k]^n, {n,0,10}, {k,0,n}]// Flatten (* _G. C. Greubel_, Jan 03 2018 *)

%o (PARI) {T(n,k)=binomial(n,k)^n}

%o for(n=0,10,for(k=0,n,print1(T(n,k),","));print(""))

%Y Cf. A167010 (row sums), A000312 (column 1), A209428.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Mar 08 2012