login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078536
Infinite lower triangular matrix, M, that satisfies [M^4](i,j) = M(i+1,j+1) for all i,j>=0 where [M^n](i,j) denotes the element at row i, column j, of the n-th power of matrix M, with M(0,k)=1 and M(k,k)=1 for all k>=0.
10
1, 1, 1, 1, 4, 1, 1, 28, 16, 1, 1, 524, 496, 64, 1, 1, 29804, 41136, 8128, 256, 1, 1, 5423660, 10272816, 2755264, 130816, 1024, 1, 1, 3276048300, 8220685104, 2804672704, 178301696, 2096128, 4096, 1, 1, 6744720496300, 21934062166320, 9139625620672, 729250931456, 11442760704, 33550336, 16384, 1
OFFSET
0,5
COMMENTS
M also satisfies: [M^(4k)](i,j) = [M^k](i+1,j+1) for all i,j,k>=0; thus [M^(4^n)](i,j) = M(i+n,j+n) for all n>=0. Conjecture: sum of the n-th row equals the partitions of 4^n into powers of 4.
FORMULA
M(n, k) = the coefficient of x^(4^n - 4^(n-k)) in the power series expansion of 1/Product_{j=0..n-k}(1-x^(4^j)) whenever 0<=k<n for all n>0 (conjecture).
EXAMPLE
The 4th power of matrix is the same matrix excluding the first row and column:
[1,__0,__0,_0,0]^4=[____1,____0,___0,__0,0]
[1,__1,__0,_0,0]___[____4,____1,___0,__0,0]
[1,__4,__1,_0,0]___[___28,___16,___1,__0,0]
[1,_28,_16,_1,0]___[__524,__496,__64,__1,0]
[1,524,496,64,1]___[29804,41136,8128,256,1]
MATHEMATICA
dim = 9;
a[_, 0] = 1; a[i_, i_] = 1; a[i_, j_] /; j > i = 0;
M = Table[a[i, j], {i, 0, dim-1}, {j, 0, dim-1}];
M4 = MatrixPower[M, 4];
sol = Table[M4[[i, j]] == M[[i+1, j+1]], {i, 1, dim-1}, {j, 1, dim-1}] // Flatten // Solve;
Table[a[i, j], {i, 0, dim-1}, {j, 0, i}] /. sol // Flatten (* Jean-François Alcover, Oct 20 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 29 2002
EXTENSIONS
More terms from Jean-François Alcover, Oct 20 2019
STATUS
approved