The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136451 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n matrix: 2 on the main antidiagonal, -1 on the adjacent sub-antidiagonals and 0 otherwise. 2
 1, 2, -1, -3, 2, 1, -4, 6, 2, -1, 5, -10, -9, 2, 1, 6, -19, -16, 12, 2, -1, -7, 28, 42, -22, -15, 2, 1, -8, 44, 68, -74, -28, 18, 2, -1, 9, -60, -138, 126, 115, -34, -21, 2, 1, 10, -85, -208, 316, 202, -165, -40, 24, 2, -1, -11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS We start from tri-antidiagonal variants of the Cartan A-n group matrix. For n=1 this is {2}, for n=2 this is {{-1,2},{2,-1}}, for n=3 {{0,-1,2},{-1,2,-1},{2,-1,0}}, for n =4 {{0,0,-1,2},{0,-1,2,-1},{-1,2,-1,0},{2,-1,0,0}} etc. The n-th row of the triangle are the expansion coefficients of the characteristic polynomial. For n=0, the empty product of the empty matrix is assigned the value T(0,0)=1. Row sums (characteristic polynomials evaluated at x=0) are 1, 1, 0, 3, -11, -16, 29, 21, 0, 55, -199, -288, 521, 377, 0, 987, -3571, -5168, 9349, 6765, 0, ... (see A038150). LINKS EXAMPLE 1; 2, -1; -3,2, 1; -4, 6, 2, -1; 5, -10, -9, 2, 1; 6, -19, -16, 12, 2, -1; -7,28, 42, -22, -15, 2, 1; -8, 44, 68, -74, -28,18, 2, -1; 9, -60, -138, 126, 115, -34, -21, 2, 1; 10, -85, -208,316, 202, -165, -40, 24, 2, -1; -11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1; MAPLE A136451x := proc(n, x)     local A, r, c ;     A := Matrix(1..n, 1..n) ;     for r from 1 to n do     for c from 1 to n do             A[r, c] :=0 ;         if r+c = 1+n then             A[r, c] := A[r, c]+2 ;         elif abs(r+c-1-n)= 1 then             A[r, c] :=  A[r, c]-1 ;         end if;     end do:     end do:     (-1)^n*LinearAlgebra[CharacteristicPolynomial](A, x) ; end proc; A136451 := proc(n, k)     coeftayl( A136451x(n, x), x=0, k) ; end proc: seq(seq(A136451(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Dec 04 2011 MATHEMATICA H[n_] := Table[Table[If[i + j - 1 == n, 2, If[i + j - 1 == n + 1, -1, If[i + j - 1 == n - 1, -1, 0]]], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[H[n], x], x], {n, 1, 10}]]; Flatten[a'] CROSSREFS Cf. A124018 (variant), A005993 (column k=1), A061927 (bisection column k=2). Sequence in context: A208825 A344391 A089353 * A066121 A039911 A208945 Adjacent sequences:  A136448 A136449 A136450 * A136452 A136453 A136454 KEYWORD tabl,sign AUTHOR Roger L. Bagula, Mar 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 21:35 EDT 2021. Contains 345255 sequences. (Running on oeis4.)