OFFSET
0,2
COMMENTS
Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n)_(k;t) = 1 + Sum(i=2..n) Sum(j=2..i) Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)_(k;t)=1, P(2)_(k;t)=2, P(3)_(k;t)=4, P(4)_(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus
a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5
where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19.
(End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 3rd line.
Washington Bomfim, The 19 bracelets with 8 beads - one blue, three reds and four blacks. [From Washington Bomfim, Aug 05 2008]
T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018).
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 8.
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
Naihuan Jing, Kailash Misra, Carla Savage, On multi-color partitions and the generalized Rogers-Ramanujan identities, arXiv:math/9907183 [math.CO], 1999.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
L. Smith, Polynomial invariants of finite groups. A survey of recent developments. Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, 211-250. See page 218. MR1433171 (98i:13009).
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
EXAMPLE
a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
MAPLE
g := proc(n) local i; add(floor(i/2)^2, i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2), {x, 0, 44}], x] (* Jean-François Alcover, Apr 08 2011 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 2, 6, 10, 19, 28}, 50] (* Harvey P. Dale, Feb 20 2012 *)
PROG
(Haskell) Following Gary W. Adamson.
import Data.List (inits, intersperse)
a005993 n = a005994_list !! n
a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
tail $ inits [1..]
-- Reinhard Zumkeller, Feb 27 2015
(Magma) I:=[1, 2, 6, 10, 19, 28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
(PARI) a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n), n)
(PARI) a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
(PARI) a = vector(50); a[1]=1; a[2]=2;
for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
(Sage)
def A005993():
a, b, to_be = 0, 0, True
while True:
yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
if to_be: b += 1
else: a += 1
to_be = not to_be
a = A005993()
[next(a) for _ in range(48)] # Peter Luschny, May 04 2016
CROSSREFS
Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013
KEYWORD
nonn,easy,nice,changed
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved