login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282011
Number T(n,k) of k-element subsets of [n] having an even sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
20
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 6, 3, 0, 1, 3, 6, 10, 9, 3, 0, 1, 3, 9, 19, 19, 9, 3, 1, 1, 4, 12, 28, 38, 28, 12, 4, 1, 1, 4, 16, 44, 66, 60, 40, 20, 5, 0, 1, 5, 20, 60, 110, 126, 100, 60, 25, 5, 0, 1, 5, 25, 85, 170, 226, 226, 170, 85, 25, 5, 1, 1, 6, 30, 110, 255, 396, 452, 396, 255, 110, 30, 6, 1
OFFSET
0,12
COMMENTS
Row n is symmetric if and only if n mod 4 in {0,3} (or if T(n,n) = 1).
LINKS
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Johann Cigler, Some Pascal-like triangles, 2018.
FORMULA
T(n,k) = Sum_{j=0..floor((n+1)/4)} C(ceiling(n/2),2*j) * C(floor(n/2),k-2*j).
T(n,k) = A007318(n,k) - A159916(n,k).
Sum_{k=0..n} k * T(n,k) = A057711(n-1) for n>0.
Sum_{k=0..n} (k+1) * T(n,k) = A087447(n) + [n=2].
EXAMPLE
T(5,0) = 1: {}.
T(5,1) = 2: {2}, {4}.
T(5,2) = 4: {1,3}, {1,5}, {2,4}, {3,5}.
T(5,3) = 6: {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}.
T(5,4) = 3: {1,2,3,4}, {1,2,4,5}, {2,3,4,5}.
T(5,5) = 0.
T(7,7) = 1: {1,2,3,4,5,6,7}.
Triangle T(n,k) begins:
1;
1, 0;
1, 1, 0;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 2, 4, 6, 3, 0;
1, 3, 6, 10, 9, 3, 0;
1, 3, 9, 19, 19, 9, 3, 1;
1, 4, 12, 28, 38, 28, 12, 4, 1;
1, 4, 16, 44, 66, 60, 40, 20, 5, 0;
1, 5, 20, 60, 110, 126, 100, 60, 25, 5, 0;
1, 5, 25, 85, 170, 226, 226, 170, 85, 25, 5, 1;
1, 6, 30, 110, 255, 396, 452, 396, 255, 110, 30, 6, 1;
MAPLE
b:= proc(n, s) option remember; expand(
`if`(n=0, s, b(n-1, s)+x*b(n-1, irem(s+n, 2))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
seq(T(n), n=0..16);
MATHEMATICA
Flatten[Table[Sum[Binomial[Ceiling[n/2], 2j]Binomial[Floor[n/2], k-2j], {j, 0, Floor[(n+1)/4]}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Feb 26 2017 *)
PROG
(PARI) a(n, k)=sum(j=0, floor((n+1)/4), binomial(ceil(n/2), 2*j)*binomial(floor(n/2), k-2*j));
tabl(nn)={for(n=0, nn, for(k=0, n, print1(a(n, k), ", "); ); print(); ); } \\ Indranil Ghosh, Feb 26 2017
CROSSREFS
Columns k=0..10 give (offsets may differ): A000012, A004526, A002620, A005993, A005994, A032092, A032093, A018211, A018212, A282077, A282078.
Row sums give A011782.
Main diaginal gives A133872(n+1).
Lower diagonals T(n+j,n) for j=1..10 give: A004525(n+1), A282079, A228705, A282080, A282081, A282082, A282083, A282084, A282085, A282086.
T(2n,n) gives A119358.
Sequence in context: A051950 A341062 A172353 * A245514 A104754 A206827
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 04 2017
STATUS
approved