login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018212 Alkane (or paraffin) numbers l(11,n). 2
1, 5, 25, 85, 255, 651, 1519, 3235, 6470, 12190, 21942, 37854, 63090, 101850, 160050, 245322, 367983, 541035, 781495, 1110395, 1554553, 2146573, 2927145, 3945045, 5260060, 6942988, 9079292, 11769100, 15131700, 19305540 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
Winston C. Yang (paper in preparation).
LINKS
N. J. A. Sloane, Classic Sequences
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Index entries for linear recurrences with constant coefficients, signature (5, -6, -10, 29, -9, -36, 36, 9, -29, 10, 6, -5, 1).
FORMULA
G.f.: (1+6*x^2+x^4)/((1-x)^5*(1-x^2)^4). [ N. J. A. Sloane ]
l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(n) = (1/(2*8!))*(n+2)*(n+4)*(n+6)*(n+8)*((n+1)*(n+3)*(n+5)*(n+7) + 1*3*5*7) - (1/3)*(1/2^6)*(n^3+(27/2)*n^2+56*n+(279/4))*(1/2)*(1-(-1)^n) [Yosu Yurramendi Jun 23 2013]
MATHEMATICA
LinearRecurrence[{5, -6, -10, 29, -9, -36, 36, 9, -29, 10, 6, -5, 1}, {1, 5, 25, 85, 255, 651, 1519, 3235, 6470, 12190, 21942, 37854, 63090}, 30] (* Ray Chandler, Sep 23 2015 *)
CROSSREFS
Cf. A282011.
Sequence in context: A147122 A051229 A058919 * A181477 A147274 A147034
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 13:20 EST 2023. Contains 367562 sequences. (Running on oeis4.)