login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018210 Alkane (or paraffin) numbers l(9,n). 4
1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520, 4032, 6216, 9324, 13608, 19440, 27192, 37389, 50556, 67408, 88660, 115258, 148148, 188552, 237692, 297115, 368368, 453376, 554064, 672792, 811920, 974304, 1162800, 1380825, 1631796 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From M. F. Hasler, May 02 2009: (Start)

Also, 6-th column of A159916, i.e., number of 6-element subsets of {1,...,n+6} whose elements add up to an odd integer.

Third differences are A002412([n/2]). (End)

F(1,6,n) is the number of bracelets with 1 blue, 6 identical red and n identical black beads. If F(1,6,1) = 4 and F(1,6,2) = 16 taken as a base, F(1,6,n) = n(n+1)(n+2)(n+3)(n+4)/120 + F(1,4,n) + F(1,6,n-2). F(1,4,n) is the number of bracelets with 1 blue, 4 identical red and n identical black beads. If F(1,4,1) = 3 and F(1,4,2) = 9 taken as a base; F(1,4,n) = n(n+1)(n+2)/6 + F(1,2,n) + F(1,4,n-2). F(1,2,n) is the number of bracelets with 1 blue, 2 identical red and n identical black beads. If F(1,2,1) = 2 and F(1,2,2) = 4 taken as a base F(1,2,n) = n + 1 + F(1,2,n-2). - Ata Aydin Uslu and Hamdi G. Ozmenekse, Mar 16 2012

REFERENCES

S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.

Winston C. Yang (paper in preparation).

LINKS

Table of n, a(n) for n=0..33.

N. J. A. Sloane, Classic Sequences

Ata A. Uslu and Hamdi G. Ozmenekse, F(1,6,n)

Ata A. Uslu and Hamdi G. Ozmenekse, F(1,4,n)

Ata A. Uslu and Hamdi G. Ozmenekse, F(1,2,n)

FORMULA

G.f.: (1+3*x^2)/(1-x)^4/(1-x^2)^3. - N. J. A. Sloane

l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.

a(2n) = (n+1)(n+2)(n+3)^2(4n^2+6n+5)/90, a(2n-1) = n(n+1)(n+2)(n+3)(4n^2+6n+5)/90. - M. F. Hasler, May 02 2009

a(n) = (1/(2*6!))*(n+2)*(n+4)*(n+6)*((n+1)*(n+3)*(n+5) + 1*3*5) - (1/2)*(1/2^4)*(n^2+7*n+11)*(1/2)*(1-(-1)^n). - Yosu Yurramendi, Jun 23 2013

MAPLE

a:=n-> (Matrix([[1, 0$7, 3, 12]]). Matrix(10, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, -3, -8, 14, 0, -14, 8, 3, -4, 1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..33); # Alois P. Heinz, Jul 31 2008

PROG

(PARI) A018210(n)=(n+2)*(n+4)*(n+6)^2*(n^2+3*n+5)/1440-if(n%2, (n^2+7*n+11)/32) \\ M. F. Hasler, May 02 2009

CROSSREFS

Sequence in context: A161142 A212960 A217873 * A054498 A217553 A225379

Adjacent sequences:  A018207 A018208 A018209 * A018211 A018212 A018213

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 10:31 EDT 2014. Contains 240577 sequences.