login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018210
Alkane (or paraffin) numbers l(9,n).
6
1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520, 4032, 6216, 9324, 13608, 19440, 27192, 37389, 50556, 67408, 88660, 115258, 148148, 188552, 237692, 297115, 368368, 453376, 554064, 672792, 811920, 974304, 1162800, 1380825, 1631796
OFFSET
0,2
COMMENTS
From M. F. Hasler, May 02 2009: (Start)
Also, 6th column of A159916, i.e., number of 6-element subsets of {1,...,n+6} whose elements add up to an odd integer.
Third differences are A002412([n/2]). (End)
F(1,6,n) is the number of bracelets with 1 blue, 6 identical red and n identical black beads. If F(1,6,1) = 4 and F(1,6,2) = 16 taken as a base, F(1,6,n) = n(n+1)(n+2)(n+3)(n+4)/120 + F(1,4,n) + F(1,6,n-2). F(1,4,n) is the number of bracelets with 1 blue, 4 identical red and n identical black beads. If F(1,4,1) = 3 and F(1,4,2) = 9 taken as a base; F(1,4,n) = n(n+1)(n+2)/6 + F(1,2,n) + F(1,4,n-2). F(1,2,n) is the number of bracelets with 1 blue, 2 identical red and n identical black beads. If F(1,2,1) = 2 and F(1,2,2) = 4 taken as a base F(1,2,n) = n + 1 + F(1,2,n-2). - Ata Aydin Uslu and Hamdi G. Ozmenekse, Mar 16 2012
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
Winston C. Yang (paper in preparation).
LINKS
N. J. A. Sloane, Classic Sequences
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Ata A. Uslu and Hamdi G. Ozmenekse, F(1,6,n)
Ata A. Uslu and Hamdi G. Ozmenekse, F(1,4,n)
Ata A. Uslu and Hamdi G. Ozmenekse, F(1,2,n)
Index entries for linear recurrences with constant coefficients, signature (4, -3, -8, 14, 0, -14, 8, 3, -4, 1).
FORMULA
G.f.: (1+3*x^2)/(1-x)^4/(1-x^2)^3. - N. J. A. Sloane
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(2n) = (n+1)(n+2)(n+3)^2(4n^2+6n+5)/90, a(2n-1) = n(n+1)(n+2)(n+3)(4n^2+6n+5)/90. - M. F. Hasler, May 02 2009
a(n) = (1/(2*6!))*(n+2)*(n+4)*(n+6)*((n+1)*(n+3)*(n+5) + 1*3*5) - (1/2)*(1/2^4)*(n^2+7*n+11)*(1/2)*(1-(-1)^n). - Yosu Yurramendi, Jun 23 2013
a(n) = A060099(n)+3*A060099(n-2). - R. J. Mathar, May 08 2020
MAPLE
a:=n-> (Matrix([[1, 0$7, 3, 12]]). Matrix(10, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, -3, -8, 14, 0, -14, 8, 3, -4, 1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..33); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
CoefficientList[(1+3*x^2)/((1-x)^7*(1+x)^3) + O[x]^34, x] (* Jean-François Alcover, Jun 08 2015 *)
LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1}, {1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520}, 34] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) A018210(n)=(n+2)*(n+4)*(n+6)^2*(n^2+3*n+5)/1440-if(n%2, (n^2+7*n+11)/32) \\ M. F. Hasler, May 02 2009
CROSSREFS
Cf. A005995 (first differences).
Sequence in context: A212960 A217873 A289086 * A054498 A360278 A293629
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved