The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018213 Alkane (or paraffin) numbers l(12,n). 4
 1, 5, 30, 110, 365, 1001, 2520, 5720, 12190, 24310, 46252, 83980, 147070, 248710, 408760, 653752, 1021735, 1562275, 2343770, 3453450, 5008003, 7153575, 10080720, 14024400, 19284460, 26225628, 35304920, 47071640 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals (1/2) * ((A000582) + (A000332 interleaved with zeros)) = (1/2) * ((1, 10, 55, 220, 715...) + (1, 0, 5, 0, 15,...)); where A000582 = binomial(n,9) and A000332 = binomial(n,4). REFERENCES S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. Winston C. Yang (paper in preparation). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 N. J. A. Sloane, Classic Sequences S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy) Index entries for linear recurrences with constant coefficients, signature (5, -5, -15, 35, 1, -65, 45, 45, -65, 1, 35, -15, -5, 5, -1). FORMULA l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd. G.f.: (5*x^4+10*x^2+1)/((x-1)^10*(x+1)^5). [Colin Barker, Aug 06 2012] a(n) = (1/(2*9!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9) +(1/6)*(1/2^7)*(n+2)*(n+4)*(n+6)*(n+8)*(1/2)*(1+(-1)^n). [Yosu Yurramendi, Jun 23 2013] MATHEMATICA CoefficientList[Series[(5 x^4 + 10 x^2 + 1)/((x - 1)^10 (x + 1)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 16 2013 *) LinearRecurrence[{5, -5, -15, 35, 1, -65, 45, 45, -65, 1, 35, -15, -5, 5, -1}, {1, 5, 30, 110, 365, 1001, 2520, 5720, 12190, 24310, 46252, 83980, 147070, 248710, 408760}, 101] (* Ray Chandler, Sep 23 2015 *) PROG (Magma) [(1/(2*Factorial(9)))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)+(1/6)*(1/2^7)*(n+2)*(n+4)*(n+6)*(n+8)*(1/2)*(1+(-1)^n): n in [0..40]]; // Vincenzo Librandi, Oct 16 2013 CROSSREFS Sequence in context: A174002 A030506 A062990 * A359975 A047661 A000649 Adjacent sequences: A018210 A018211 A018212 * A018214 A018215 A018216 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 19:17 EDT 2024. Contains 375073 sequences. (Running on oeis4.)