login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174002
a(n) = n*binomial(n+4, 4).
3
0, 5, 30, 105, 280, 630, 1260, 2310, 3960, 6435, 10010, 15015, 21840, 30940, 42840, 58140, 77520, 101745, 131670, 168245, 212520, 265650, 328900, 403650, 491400, 593775, 712530, 849555, 1006880, 1186680, 1391280, 1623160, 1884960, 2179485
OFFSET
0,2
COMMENTS
This sequence can be computed from Pascal's triangle. Find the fifth number in a row and multiply it by the second number of the next row. - Alonso del Arte, Jan 21 2018
FORMULA
a(n) = (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n) / 24.
For n > 0: a(n) = A003506(n+4, 5).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0)=0, a(1)=5, a(2)=30, a(3)=105, a(4)=280, a(5)=630. - Harvey P. Dale, Dec 03 2011
G.f.: 5*x/(1-x)^6. - Colin Barker, Mar 18 2012
MATHEMATICA
Table[n Binomial[n + 4, 4], {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 5, 30, 105, 280, 630}, 40] (* Harvey P. Dale, Dec 03 2011 *)
PROG
(Magma) [ (n^5+10*n^4+35*n^3+50*n^2+24*n)/24: n in [0..40] ]; // Vincenzo Librandi, Dec 28 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Mar 05 2010, Mar 17 2010
EXTENSIONS
Title switched with first Formula section entry, at the suggestion of Alonso del Arte, by Jon E. Schoenfield, Jan 28 2018
STATUS
approved