login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258582
a(n) = n*(2*n + 1)*(4*n + 1)/3.
3
0, 5, 30, 91, 204, 385, 650, 1015, 1496, 2109, 2870, 3795, 4900, 6201, 7714, 9455, 11440, 13685, 16206, 19019, 22140, 25585, 29370, 33511, 38024, 42925, 48230, 53955, 60116, 66729, 73810, 81375, 89440, 98021, 107134, 116795, 127020, 137825, 149226, 161239, 173880
OFFSET
0,2
COMMENTS
First bisection of the square pyramidal numbers (A000330).
FORMULA
G.f.: x*(5 + 10*x + x^2)/(1 - x)^4.
a(n) = A000330(2*n).
Sum_{n>0} 1/a(n) = 3*(6 - Pi - 4*log(2)) = 0.25745587...
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Nov 18 2015
a(n) = A006918(4*n-1) = A053307(4*n-1) = A228706(4*n-1) for n>0. - Bruno Berselli, Nov 18 2015
a(n) = Sum_{k=1..2*n} k^2 (see the first comment). E.g.f. exp(x)*(5*x+ 20*x^2/2+16*x^3/3!). - Wolfdieter Lang, Mar 13 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) + 6*sqrt(2)*log(1+sqrt(2)) + 3*(sqrt(2)-1/2)*Pi - 18. - Amiram Eldar, Sep 17 2022
MAPLE
A258582:=n->n*(2*n + 1)*(4*n + 1)/3: seq(A258582(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2015
MATHEMATICA
Table[(1/3) n (2 n + 1) (4 n + 1), {n, 0, 45}]
PROG
(PARI) vector(100, n, n--; n*(2*n+1)*(4*n+1)/3) \\ Altug Alkan, Nov 06 2015
(PARI) concat(0, Vec((5*x + 10*x^2 + x^3)/(1 - x)^4 + O(x^50))) \\ Altug Alkan, Nov 06 2015
(Magma) [n*(2*n+1)*(4*n+1)/3: n in [0..50]]; // Wesley Ivan Hurt, Nov 17 2015
CROSSREFS
Cf. A000330, A001477, A005408, A016813, A053126 (partial sums), A100157.
Sequence in context: A273480 A164015 A128302 * A288679 A071252 A174002
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 06 2015
STATUS
approved