OFFSET
1,1
COMMENTS
Two words x, y are 3-binomial equivalent if the word binomial coefficients (x|r) and (y|r) coincide for all words r of length 1,2, and 3. A word binomial coefficient (x|r) gives the number of times the word r appears as a (not necessarily contiguous) subsequence of x.
LINKS
Johan Chrisnata, Han Mao Kiah, Sankeerth Rao, Alexander Vardy, Eitan Yaakobi, Hanwen Yao, On the Number of Distinct k-Decks: Enumeration and Bounds, 19th International Symposium on Communications and Information Technologies (ISCIT 2019, Ho Chi Minh City, Viet Nam) 519-524.
M. Rigo and P. Salimov, Another generalization of abelian equivalence: Binomial complexity of infinite words, Theoretical Computer Science 601 (2015), 47-57.
EXAMPLE
For n=7 all words are an equivalence class by themselves, with the exception of {0110001,1000110} and {0111001,1001110}. So there are 2^7 - 2 = 126 equivalence classes.
G.f. = 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 + 64*x^6 + 126*x^7 + 247*x^8 + ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Nov 06 2015
EXTENSIONS
a(17)-a(38) from Han Mao Kiah, May 25 2020
STATUS
approved