login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071252
a(n) = n*(n - 1)*(n^2 + 1)/2.
1
0, 0, 5, 30, 102, 260, 555, 1050, 1820, 2952, 4545, 6710, 9570, 13260, 17927, 23730, 30840, 39440, 49725, 61902, 76190, 92820, 112035, 134090, 159252, 187800, 220025, 256230, 296730, 341852, 391935, 447330, 508400, 575520, 649077, 729470, 817110, 912420
OFFSET
0,3
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
a(n) = floor(n^5/(n+1))/2. - Gary Detlefs, Mar 31 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) n>4, a(0)=0, a(1)=0, a(2)=5, a(3)=30, a(4)=102. - Yosu Yurramendi, Sep 03 2013
G.f.: x^2*(5+5*x+2*x^2)/(1-x)^5. - Joerg Arndt, Sep 04 2013
From Indranil Ghosh, Apr 05 2017: (Start)
a(n) = A002378(n) * A002522(n) / 2.
E.g.f.: exp(x)*x^2*(5 + 5*x + x^2)/2.
(End)
MATHEMATICA
f[n_] := n (n - 1) (n^2 + 1)/2 (* Or *) f[n_] := Floor[n^5/(n + 1)]/2; Array[f, 38, 0] (* Robert G. Wilson v, Apr 01 2012 *)
PROG
(Magma) [n*(n-1)*(n^2+1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=n*(n-1)*(n^2+1)/2; \\ Joerg Arndt, Sep 04 2013
(Python) def a(n): return n*(n - 1)*(n**2 + 1)/2 # Indranil Ghosh, Apr 05 2017
(SageMath)
def A071252(n): return binomial(n, 2)*(1+n^2)
[A071252(n) for n in range(41)] # G. C. Greubel, Aug 07 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved