login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071239
a(n) = n*(n+1)*(n^2 + 2)/6.
9
0, 1, 6, 22, 60, 135, 266, 476, 792, 1245, 1870, 2706, 3796, 5187, 6930, 9080, 11696, 14841, 18582, 22990, 28140, 34111, 40986, 48852, 57800, 67925, 79326, 92106, 106372, 122235, 139810, 159216, 180576, 204017, 229670, 257670, 288156, 321271, 357162, 395980
OFFSET
0,3
COMMENTS
Number of binary pattern classes with 4 black beads in the (2,n)-rectangular grid; two patterns are in the same class if one of them can be obtained by reflection or rotation of the other one. - Yosu Yurramendi, Sep 12 2008
This sequence is the case k=n+3 of b(n,k) = n*(n+1)*((k-2)*n-(k-5))/6, which is the n-th k-gonal pyramidal number. Therefore, apart from 0, this sequence is the 3rd diagonal of the array in A080851. - Luciano Ancora, Apr 10 2015
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n>4. - Harvey P. Dale, May 01 2013
a(n) = (binomial(2*n+2,4) + 3*binomial(n+1,2))/4 = (A053134(n-1) + 3*A000217(n))/4 . - Yosu Yurramendi and María Merino, Aug 21 2013
G.f.: x*(1+x+2*x^2) / (1-x)^5 . - R. J. Mathar, Aug 21 2013
E.g.f.: (1/6)*x*(6 + 12*x + 7*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 06 2024
MATHEMATICA
Table[(n(n+1)(n^2+2))/6, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 6, 22, 60}, 40] (* Harvey P. Dale, May 01 2013 *)
PROG
(Magma) [n*(n+1)*(n^2+2)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(R) a <- vector()
for(n in 1:40) a[n] <- (1/4)*(choose(2*n, 4) + 3*choose(n, 2))
a
# Yosu Yurramendi and María Merino, Aug 21 2013
(PARI) a(n)=n*(n+1)*(n^2+2)/6 \\ Charles R Greathouse IV, Oct 07 2015
(SageMath)
def A071239(n): return binomial(n+1, 2)*(n^2+2)//3
[A071239(n) for n in range(41)] # G. C. Greubel, Aug 06 2024
CROSSREFS
Sequence in context: A127760 A320243 A066188 * A105450 A011888 A081282
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved