login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071236
a(n) = (n^10 + n^5)/2.
2
0, 1, 528, 29646, 524800, 4884375, 30236976, 141246028, 536887296, 1743421725, 5000050000, 12968792826, 30958806528, 68929431571, 144627596400, 288325575000, 549756338176, 1007997660153, 1785234558096, 3065534366950, 5120001600000, 8339942531151
OFFSET
0,3
COMMENTS
Subset of A000217. - Robert Israel, Nov 20 2014
Number of unoriented rows of length 10 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=528, there are 2^10=1024 oriented arrangements of two colors. Of these, 2^5=32 are achiral. That leaves (1024-32)/2=496 chiral pairs. Adding achiral and chiral, we get 528. - Robert A. Russell, Nov 13 2018
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
FORMULA
a(0)=0, a(1)=1, a(2)=528, a(3)=29646, a(4)=524800, a(5)=4884375, a(6)=30236976, a(7)=141246028, a(8)=536887296, a(9)=1743421725, a(10)=5000050000, a(n)= 11*a(n-1)- 55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+ 55*a(n-9)- 11*a(n-10)+a(n-11). - Harvey P. Dale, Jul 24 2012
From Robert Israel, Nov 19 2014: (Start)
a(n) = (A008454(n) + A000584(n))/2 = n^5*(n+1)*(n^4 -n^3 +n^2 -n +1)/2.
G.f.: x*(1 +517*x +23893*x^2 +227569*x^3 +655315*x^4 +655039*x^5 +227623*x^6 +23947*x^7 +496*x^8)/(1-x)^11. (End)
From Robert A. Russell, Nov 13 2018: (Start)
G.f.: (Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..5} S2(5,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..9} A145882(10,k) * x^k / (1-x)^11.
E.g.f.: (Sum_{k=1..10} S2(10,k)*x^k + Sum_{k=1..5} S2(5,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n > 10, a(n) = Sum_{j=1..11} -binomial(j-12,j) * a(n-j). (End)
E.g.f.: x*(2 + 526*x + 9355*x^2 + 34115 x^3 + 42526*x^4 + 22827*x^5 + 5880*x^6 + 750*x^7 + 45*x^8 + x^9)*exp(x)/2. - G. C. Greubel, Nov 15 2018
MAPLE
seq((n^10 + n^5)/2, n=0..100); # Robert Israel, Nov 19 2014
MATHEMATICA
Table[n^5(n+1)(n^4-n^3+n^2-n+1)/2, {n, 0, 30}] (* or *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 1, 528, 29646, 524800, 4884375, 30236976, 141246028, 536887296, 1743421725, 5000050000}, 30](* Harvey P. Dale, Jul 24 2012 *)
PROG
(Magma) [n^5*(n+1)*(n^4-n^3+n^2-n+1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=binomial(n^5+1, 2) \\ Charles R Greathouse IV, Nov 19 2014
(Sage) [n^5*(1 + n^5)/2 for n in range(40)] # G. C. Greubel, Nov 15 2018
(GAP) List([0..40], n -> n^5*(1 + n^5)/2); # G. C. Greubel, Nov 15 2018
CROSSREFS
Cf. A000217.
Row 10 of A277504.
Cf. A008454 (oriented), A000584 (achiral).
Sequence in context: A233103 A223244 A059465 * A048101 A233087 A008690
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
EXTENSIONS
Definition simplified by Robert Israel, Nov 19 2014
STATUS
approved