login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071235
a(n) = (n^12 + n^6)/2.
2
0, 1, 2080, 266085, 8390656, 122078125, 1088414496, 6920702425, 34359869440, 141215033961, 500000500000, 1569215074141, 4458051717120, 11649044974645, 28346959952416, 64873174640625, 140737496743936, 291311130683665, 578415707719200, 1106657483056021
OFFSET
0,3
COMMENTS
Number of unoriented rows of length 12 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=2080, there are 2^12=4096 oriented arrangements of two colors. Of these, 2^6=64 are achiral. That leaves (4096-64)/2=2016 chiral pairs. Adding achiral and chiral, we get 2080. - Robert A. Russell, Nov 13 2018
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
LINKS
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
a(n) = n^6*(n^2 + 1)*(n^4 - n^2 + 1)/2.
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A008456(n) + A001014(n)) / 2 = (n^12 + n^6) / 2.
G.f.: (Sum_{j=1..12} S2(12,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..6} S2(6,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..11} A145882(12,k) * x^k / (1-x)^13.
E.g.f.: (Sum_{k=1..12} S2(12,k)*x^k + Sum_{k=1..6} S2(6,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>12, a(n) = Sum_{j=1..13} -binomial(j-14,j) * a(n-j). (End)
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: x*(1 +2067*x +239123*x^2 +5093505*x^3 +33160062*x^4 + 81255642*x^5 +81255642*x^6 +33160062*x^7 +5093505*x^8 +239123*x^9 +2067*x^10 +x^11)/( 1-x)^13.
E.g.f.: x*(2 +2078*x +86616*x^2 +611566*x^3 +1379415*x^4 +*1323653*x^5 + 627396*x^6 +159027*x^7 +22275*x^8 +1705*x^9 +66*x^10 +x^11)*exp(x)/2. (End)
MATHEMATICA
Table[(n^12 + n^6)/2, {n, 0, 30}] (* Robert A. Russell, Nov 13 2018 *)
PROG
(Magma) [n^6*(n^2+1)*(n^4-n^2+1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(PARI) vector(40, n, n--; ) \\ G. C. Greubel, Nov 15 2018
(Sage) [n^6*(1 + n^6)/2 for n in range(40)] # G. C. Greubel, Nov 15 2018
(GAP) List([0..40], n -> (n^12 + n^6)/2); # G. C. Greubel, Nov 15 2018
(Python) for n in range(0, 20): print(int((n**12 + n**6)/2), end=', ') # Stefano Spezia, Nov 15 2018
CROSSREFS
Row 12 of A277504.
Cf. A008456 (oriented), A001014 (achiral).
Sequence in context: A178272 A194605 A233104 * A259414 A233088 A229909
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
EXTENSIONS
New name from G. C. Greubel, Nov 15 2018
STATUS
approved