login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071237
a(n) = n*(n+1)*(n^2+1)/2.
4
0, 2, 15, 60, 170, 390, 777, 1400, 2340, 3690, 5555, 8052, 11310, 15470, 20685, 27120, 34952, 44370, 55575, 68780, 84210, 102102, 122705, 146280, 173100, 203450, 237627, 275940, 318710, 366270, 418965, 477152, 541200, 611490, 688415, 772380, 863802, 963110
OFFSET
0,2
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
LINKS
FORMULA
From Arkadiusz Wesolowski, Apr 01 2012: (Start)
a(n) = A000217(n)*A002522(n).
a(0) = 0, a(1) = 2; for n >= 2, a(n) = ceiling(n^5/(2*n-2)) - 1.
G.f.: x*(2 + 5*x*(1 + x))/(1 - x)^5. (End)
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) for n>4, a(0)=0, a(1)=2, a(2)=15, a(3)=60, a(4)=170. - Yosu Yurramendi, Sep 03 2013
E.g.f.: (1/2)*x*(4 + 11*x + 7*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 05 2024
MATHEMATICA
Table[(n^4 + n^3 + n^2 + n)/2, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
PROG
(Magma) [n*(n+1)*(n^2+1)/2: n in [0..40] ]; // Vincenzo Librandi, May 23 2011
(SageMath)
def A071237(n): return (n^2+1)*binomial(n+1, 2)
[A071237(n) for n in range(51)] # G. C. Greubel, Aug 05 2024
CROSSREFS
Sequence in context: A034571 A295828 A126019 * A006470 A084169 A337905
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved