OFFSET
1,1
COMMENTS
a(n) is the number of ordered rooted trees with n+3 non-root nodes that have 3 leaves; see A108838. - Joerg Arndt, Aug 18 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B, Vol. 18, No. 3 (1975), pp. 222-259.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = (n+1)*binomial(n+3, 4).
a(n) = A027789(n)/2.
From Zerinvary Lajos, Dec 14 2005: (Start)
a(n) = binomial(n+2, 2)*binomial(n+4, 3)/2;
G.f.: x*(2+3*x)/(1-x)^6. (End)
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = n*(n+1)^2*(n+2)*(n+3)/24. (End)
Sum_{n>=1} 1/a(n) = 61/3 - 2*Pi^2. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2 - 16*log(2) + 5/3. - Amiram Eldar, Jan 28 2022
MAPLE
MATHEMATICA
Table[n (n + 1)^2 (n + 2) (n + 3) / 24, {n, 50}] (* Vincenzo Librandi, May 03 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {2, 15, 60, 175, 420, 882}, 50] (* Harvey P. Dale, Jul 18 2024 *)
PROG
(Magma) [(n+1)*Binomial(n+3, 4): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name clarified by Andrew Howroyd, Apr 03 2021
STATUS
approved