The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006473 a(n) = binomial(n,2)!/n!. (Formerly M5217) 1
 1, 30, 30240, 1816214400, 10137091700736000, 7561714896123855667200000, 1025113885554181044609786839040000000, 32964677266721834921175915315161407370035200000000, 318071672921132854486459356650996997744817246158245068800000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS a(n) is also the number of distinct possible (n-1)-dimensional simplices if the (n-1)*n/2 1-faces are given (up to symmetry, rotation, reflection). - Dan Dima, Nov 03 2011 a(n) is also the number of edge labelings of the complete graph on n vertices. - Nikos Apostolakis, Jul 09 2013 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 3..30 O. Frank and K. Svensson, On probability distributions of single-linkage dendrograms, Journal of Statistical Computation and Simulation, 12 (1981), 121-131. (Annotated scanned copy) C. L. Mallows, Note to N. J. A. Sloane circa 1979. EXAMPLE a(3)=1 since there is one possible triangle if the 3 edges are given and a(4)=30 since there are 30 distinct possible tetrahedra if the 6 edges are given. - Dan Dima, Nov 03 2011 MATHEMATICA Table[Binomial[n, 2]!/n!, {n, 3, 20}] (* Harvey P. Dale, May 08 2013 *) CROSSREFS Sequence in context: A306917 A135349 A159373 * A115459 A135421 A028668 Adjacent sequences: A006470 A006471 A006472 * A006474 A006475 A006476 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 02:52 EDT 2024. Contains 375959 sequences. (Running on oeis4.)