login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084169
A Pell Jacobsthal product.
1
0, 1, 2, 15, 60, 319, 1470, 7267, 34680, 168435, 810898, 3921103, 18918900, 91381991, 441150502, 2130258075, 10285325040, 49663079099, 239791814010, 1157823924167, 5590452446700, 26993130847215, 130334271942158
OFFSET
0,3
FORMULA
a(n) = (2^n - (-1)^n)*( (1+sqrt(2))^n - (1-sqrt(2))^n )/(6*sqrt(2)).
a(n) = A001045(n)*A000129(n).
G.f.: x*(1-2*x^2)/((1+2*x-x^2)*(1-4*x-4*x^2)). - Colin Barker, May 01 2012
a(n) = (A007985 + 2*A057087(n))/3. - R. J. Mathar, Sep 29 2020
MATHEMATICA
LinearRecurrence[{2, 13, 4, -4}, {0, 1, 2, 15}, 41] (* G. C. Greubel, Oct 11 2022 *)
PROG
(Magma) [0] cat [(2^n-(-1)^n)*Evaluate(DicksonSecond(n-1, -1), 2)/3: n in [1..40]]; // G. C. Greubel, Oct 11 2022
(SageMath)
def A084169(n): return (2^n-(-1)^n)*lucas_number1(n, 2, -1)/3
[A084169(n) for n in range(41)] # G. C. Greubel, Oct 11 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 18 2003
STATUS
approved