login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071238
a(n) = n*(n+1)*(2*n^2+1)/6.
7
0, 1, 9, 38, 110, 255, 511, 924, 1548, 2445, 3685, 5346, 7514, 10283, 13755, 18040, 23256, 29529, 36993, 45790, 56070, 67991, 81719, 97428, 115300, 135525, 158301, 183834, 212338, 244035, 279155, 317936, 360624, 407473, 458745, 514710, 575646, 641839
OFFSET
0,3
COMMENTS
Binomial transform of [1, 8, 21, 22, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
For n > 0, a(n) is the n-th antidiagonal sum of the convolution arrays A213752 and A213836). - Clark Kimberling, Jun 20 2012
The first differences are given in A277229, as a convolution of the odd-indexed triangular numbers A000217(2*n+1) and the squares A000290(n), n >= 0. - J. M. Bergot, Sep 14 2016
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
G.f.: x*(1+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 22 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4, a(0)=0, a(1)=1, a(2)=9, a(3)=38, a(4)=110. - Yosu Yurramendi, Sep 03 2013
E.g.f.: (1/6)*x*(6 + 21*x + 14*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Sep 17 2016
a(n) = n*A000292(n) + (n-1)*A000292(n-1). - Bruno Berselli, Sep 22 2016
a(n) = A002417(n-1) + A002417(n). - Yasser Arath Chavez Reyes, Feb 15 2024
MAPLE
A071238:=n->n*(n+1)*(2*n^2+1)/6: seq(A071238(n), n=0..60); # Wesley Ivan Hurt, Sep 24 2016
MATHEMATICA
Table[n (n + 1) (2 n^2 + 1)/6, {n, 0, 37}] (* or *)
CoefficientList[Series[x (1 + x) (1 + 3 x)/(1 - x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Sep 14 2016 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 9, 38, 110}, 40] (* Harvey P. Dale, Oct 02 2021 *)
PROG
(Magma) [n*(n+1)*(2*n^2+1)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=n*(n+1)*(2*n^2+1)/6; \\ Joerg Arndt, Sep 04 2013
CROSSREFS
Cf. A000292, A002417, A071270, A277229 (first differences).
Sequence in context: A117085 A120780 A071229 * A213583 A343521 A050854
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved