login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213752
Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.
5
1, 6, 3, 19, 14, 5, 44, 37, 22, 7, 85, 76, 55, 30, 9, 146, 135, 108, 73, 38, 11, 231, 218, 185, 140, 91, 46, 13, 344, 329, 290, 235, 172, 109, 54, 15, 489, 472, 427, 362, 285, 204, 127, 62, 17, 670, 651, 600, 525, 434, 335, 236, 145, 70, 19, 891, 870, 813
OFFSET
1,2
COMMENTS
Principal diagonal: A100157
Antidiagonal sums: A071238
row 1, (1,3,5,7,9,...)**(1,3,5,7,9,...): A005900
row 2, (1,3,5,7,9,...)**(3,5,7,9,11,...): A143941
row 3, (1,3,5,7,9,...)**(5,7,9,11,13,...): (2*k^3 + 12*k^2 + k)/6
row 4, (1,3,5,7,9,...)**(7,9,11,13,15,,...): (2*k^3 + 18*k^2 + k)/6
For a guide to related arrays, see A213500.
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = 2*n - 1 + 2*x - (2*n - 3)*x^2 and g(x) = (1 - x )^4.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1...6....19...44....85....146
3...14...37...76....135...218
5...22...55...108...185...290
7...30...73...140...235...362
9...38...91...172...285...434
MATHEMATICA
b[n_] := 2 n - 1; c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213752 *)
Table[t[n, n], {n, 1, 40}] (* A100157 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A071238 *)
CROSSREFS
Cf. A213500.
Sequence in context: A050008 A166450 A019069 * A134410 A123153 A276805
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 20 2012
STATUS
approved