login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071270 a(n) = n^2*(2*n^2+1)/3. 3
0, 1, 12, 57, 176, 425, 876, 1617, 2752, 4401, 6700, 9801, 13872, 19097, 25676, 33825, 43776, 55777, 70092, 87001, 106800, 129801, 156332, 186737, 221376, 260625, 304876, 354537, 410032, 471801, 540300, 616001, 699392, 790977, 891276, 1000825, 1120176 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=12, a(3)=57, a(4)=176. [Yosu Yurramendi, Sep 03 2013]

a(n) = A000217(A001105(n))/ 3. - Michel Marcus, Mar 02 2018

MAPLE

A071270:=n->(n^2)*(2*n^2+1)/3; seq(A071270(n), n=0..100); # Wesley Ivan Hurt, Nov 14 2013

MATHEMATICA

Table[(n^2)(2n^2+1)/3, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 14 2013 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 12, 57, 176}, 50] (* Harvey P. Dale, Jan 09 2016 *)

PROG

(MAGMA) [n^2*(2*n^2+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011

(R)

a <- c(0, 1, 12, 57, 176)

for(n in (length(a)+1):30)

     a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]

a [Yosu Yurramendi, Sep 03 2013]

CROSSREFS

Cf. A000217, A001105, A071238.

Sequence in context: A123983 A212682 A212134 * A051877 A212065 A121693

Adjacent sequences:  A071267 A071268 A071269 * A071271 A071272 A071273

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jun 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 17:04 EST 2020. Contains 332080 sequences. (Running on oeis4.)