The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071270 a(n) = n^2*(2*n^2+1)/3. 3
 0, 1, 12, 57, 176, 425, 876, 1617, 2752, 4401, 6700, 9801, 13872, 19097, 25676, 33825, 43776, 55777, 70092, 87001, 106800, 129801, 156332, 186737, 221376, 260625, 304876, 354537, 410032, 471801, 540300, 616001, 699392, 790977, 891276, 1000825, 1120176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=12, a(3)=57, a(4)=176. [Yosu Yurramendi, Sep 03 2013] a(n) = A000217(A001105(n))/ 3. - Michel Marcus, Mar 02 2018 MAPLE A071270:=n->(n^2)*(2*n^2+1)/3; seq(A071270(n), n=0..100); # Wesley Ivan Hurt, Nov 14 2013 MATHEMATICA Table[(n^2)(2n^2+1)/3, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 14 2013 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 12, 57, 176}, 50] (* Harvey P. Dale, Jan 09 2016 *) PROG (Magma) [n^2*(2*n^2+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011 (R) a <- c(0, 1, 12, 57, 176) for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5] a [Yosu Yurramendi, Sep 03 2013] CROSSREFS Cf. A000217, A001105, A071238. Sequence in context: A123983 A212682 A212134 * A051877 A212065 A121693 Adjacent sequences: A071267 A071268 A071269 * A071271 A071272 A071273 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jun 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 05:54 EST 2024. Contains 370294 sequences. (Running on oeis4.)