login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071270
a(n) = n^2*(2*n^2 + 1)/3.
3
0, 1, 12, 57, 176, 425, 876, 1617, 2752, 4401, 6700, 9801, 13872, 19097, 25676, 33825, 43776, 55777, 70092, 87001, 106800, 129801, 156332, 186737, 221376, 260625, 304876, 354537, 410032, 471801, 540300, 616001, 699392, 790977, 891276, 1000825, 1120176
OFFSET
0,3
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=12, a(3)=57, a(4)=176. - Yosu Yurramendi, Sep 03 2013
a(n) = A000217(A001105(n))/ 3. - Michel Marcus, Mar 02 2018
From G. C. Greubel, Sep 13 2024: (Start)
G.f.: x*(1 + 7*x + 7*x^2 + x^3)/(1-x)^5.
E.g.f.: (1/3)*x*(3 + 15*x + 12*x^2 + 2*x^3)*exp(x). (End)
MAPLE
A071270:=n->(n^2)*(2*n^2+1)/3; seq(A071270(n), n=0..100); # Wesley Ivan Hurt, Nov 14 2013
MATHEMATICA
Table[(n^2)(2n^2+1)/3, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 14 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 12, 57, 176}, 50] (* Harvey P. Dale, Jan 09 2016 *)
PROG
(Magma) [n^2*(2*n^2+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(R)
a <- c(0, 1, 12, 57, 176)
for(n in (length(a)+1):30)
a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]
a # Yosu Yurramendi, Sep 03 2013
(SageMath)
def A071270(n): return binomial(2*n^2 + 1, 2)/3
[A071270(n) for n in range(41)] # G. C. Greubel, Sep 13 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved