login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212682
Number of (w,x,y,z) with all terms in {1,...,n} and |x-y|>=|y-z|.
3
0, 1, 12, 57, 168, 395, 792, 1435, 2400, 3789, 5700, 8261, 11592, 15847, 21168, 27735, 35712, 45305, 56700, 70129, 85800, 103971, 124872, 148787, 175968, 206725, 241332, 280125, 323400, 371519, 424800, 483631, 548352, 619377, 697068
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n)=3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
G.f.: (x + 9*x^2 + 22*x^3 + 14*x^4 + 3*x^5 - x^6)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[x - y] >= Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212682 *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 1, 12, 57, 168, 395, 792}, 40]
CROSSREFS
Cf. A211795.
Sequence in context: A166997 A204674 A123983 * A212134 A071270 A051877
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 24 2012
STATUS
approved