The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212681 Number of (w,x,y,z) with all terms in {1,...,n} and |x-y|<|y-z|. 2
 0, 0, 4, 24, 88, 230, 504, 966, 1696, 2772, 4300, 6380, 9144, 12714, 17248, 22890, 29824, 38216, 48276, 60192, 74200, 90510, 109384, 131054, 155808, 183900, 215644, 251316, 291256, 335762, 385200, 439890, 500224, 566544, 639268 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also, the number of (w,x,y,z) with all terms in {1,...,n} and |x-y|>|y-z|. a(n)+A212682(n)=n^4. Every term is even. For a guide to related sequences, see A211795. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1). FORMULA a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7). G.f.: (4*x^2 + 12*x^3 + 20*x^4 + 10*x^5 + 2*x^6)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7). MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[x - y] < Abs[y - z], s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]]   (* A212681 *) %/2 (* integers *) LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 0, 4, 24, 88, 230, 504}, 40] CROSSREFS Cf. A211795. Sequence in context: A005561 A061612 A097875 * A026694 A026967 A026977 Adjacent sequences:  A212678 A212679 A212680 * A212682 A212683 A212684 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 13:12 EDT 2022. Contains 356039 sequences. (Running on oeis4.)