login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005561 Number of walks on square lattice.
(Formerly M3596)
4
1, 4, 24, 84, 392, 1344, 5760, 19800, 81675, 283140, 1145144, 4008004, 16032016, 56632576, 225059328, 801773856, 3173688180, 11392726800, 44986664800, 162594659920, 641087516256, 2331227331840, 9183622822400, 33577620944400, 132211882468575, 485773975404900 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..1000

R. K. Guy, Letter to N. J. A. Sloane, May 1990

R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6. See w_n'(3).

FORMULA

a(n) = C(n+4, ceiling(n/2))*C(n+3, floor(n/2)) - C(n+4, ceiling((n-1)/2))*C(n+3, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004

Conjecture: (n-2)*(n-3)*(2*n+1)*(n+6)*(n+5)*a(n) - 4*n*(n+1)*(2*n^2+4*n+33)*a(n-1) - 16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017

MAPLE

wnprime := proc(n, y)

    local k;

    if type(n-y, 'even') then

        k := (n-y)/2 ;

        binomial(n+1, k)*(binomial(n, k)-binomial(n, k-1)) ;

    else

        k := (n-y-1)/2 ;

        binomial(n+1, k)*binomial(n, k+1)-binomial(n+1, k+1)*binomial(n, k-1) ;

    end if;

end proc:

A005561 := proc(n)

    wnprime(n, 3) ;

end proc:

seq(A005561(n), n=3..30) ; # R. J. Mathar, Apr 02 2017

MATHEMATICA

Table[Binomial[n+4, Ceiling[n/2]] Binomial[n+3, Floor[n/2]]-Binomial[n+4, Ceiling[(n-1)/2]] Binomial[n+3, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)

PROG

(PARI) {a(n)=binomial(n+4, ceil(n/2))*binomial(n+3, floor(n/2)) - binomial(n+4, ceil((n-1)/2))*binomial(n+3, floor((n-1)/2))}

(MAGMA) [Binomial(n+4, Ceiling(n/2))*Binomial(n+3, Floor(n/2)) - Binomial(n+4, Ceiling((n-1)/2))*Binomial(n+3, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017

CROSSREFS

Cf. A005558-A005562, A093768.

Sequence in context: A334581 A341688 A341877 * A061612 A097875 A212681

Adjacent sequences:  A005558 A005559 A005560 * A005562 A005563 A005564

KEYWORD

nonn,walk

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 04:59 EDT 2021. Contains 348271 sequences. (Running on oeis4.)