login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005560 Number of walks on square lattice.
(Formerly M2987)
5
1, 3, 15, 45, 189, 588, 2352, 7560, 29700, 98010, 382239, 1288287, 5010005, 17177160, 66745536, 232092432, 901995588, 3173688180, 12342120700, 43861998180, 170724392916, 611947174608, 2384209771200, 8609646396000, 33577620944400, 122041737663300, 476432168185575 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..1000

R. K. Guy, Letter to N. J. A. Sloane, May 1990

R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6, w_n'(2).

FORMULA

a(n) = C(n+3, ceiling(n/2))*C(n+2, floor(n/2)) - C(n+3, ceiling((n-1)/2))*C(n+2, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004

Conjecture: (n-1)*(n-2)*(2*n+1)*(n+5)*(n+4)*a(n) -4*n*(n+1)*(2*n^2+4*n+19)*a(n-1) -16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017

MAPLE

wnprime := proc(n, y)

local k;

if type(n-y, 'even') then

k := (n-y)/2 ;

binomial(n+1, k)*(binomial(n, k)-binomial(n, k-1)) ;

else

k := (n-y-1)/2 ;

binomial(n+1, k)*binomial(n, k+1)-binomial(n+1, k+1)*binomial(n, k-1) ;

end if;

end proc:

A005560 := proc(n)

wnprime(n, 2) ;

end proc:

seq(A005560(n), n=2..20) ; # R. J. Mathar, Apr 02 2017

MATHEMATICA

Table[Binomial[n+3, Ceiling[n/2]] Binomial[n+2, Floor[n/2]]-Binomial[n+3, Ceiling[(n-1)/2]] Binomial[n+2, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)

PROG

(PARI) {a(n)=binomial(n+3, ceil(n/2))*binomial(n+2, floor(n/2)) - binomial(n+3, ceil((n-1)/2))*binomial(n+2, floor((n-1)/2))}

(Magma) [Binomial(n+3, Ceiling(n/2))*Binomial(n+2, Floor(n/2)) - Binomial(n+3, Ceiling((n-1)/2))*Binomial(n+2, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017

CROSSREFS

Cf. A005558-A005562, A093768.

Sequence in context: A074355 A201868 A260021 * A100747 A100737 A178669

Adjacent sequences: A005557 A005558 A005559 * A005561 A005562 A005563

KEYWORD

nonn,walk

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 06:37 EDT 2023. Contains 361596 sequences. (Running on oeis4.)