The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005557 Number of walks on square lattice.
(Formerly M5277)
7
42, 132, 297, 572, 1001, 1638, 2548, 3808, 5508, 7752, 10659, 14364, 19019, 24794, 31878, 40480, 50830, 63180, 77805, 95004, 115101, 138446, 165416, 196416, 231880, 272272, 318087, 369852, 428127, 493506, 566618, 648128, 738738, 839188, 950257, 1072764 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
FORMULA
a(n) = A009766(n+5, 5) = (n+1)*binomial(n+10, 4)/5.
G.f.: (42 - 120*x + 135*x^2 - 70*x^3 + 14*x^4)/(1-x)^6; numerator polynomial is N(2;4, x) from A062991.
a(n) = binomial(n+9,5) - binomial(n+9,3). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+9, 4). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 2509/63504.
Sum_{n>=0} (-1)^n/a(n) = 951395/63504 - 1360*log(2)/63. (End)
MAPLE
[seq(binomial(n, 5)-binomial(n, 3), n=9..55)]; # Zerinvary Lajos, Jul 19 2006
A005557:=(42-120*z+135*z**2-70*z**3+14*z**4)#(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[(14 z^4 - 70 z^3 + 135 z^2 - 120 z + 42)/(z - 1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {42, 132, 297, 572, 1001, 1638}, 40] (* Harvey P. Dale, Feb 22 2024 *)
PROG
(Magma) [(n+1)*Binomial(n+10, 4)/5: n in [0..40]]; // Vincenzo Librandi, Mar 20 2013
(GAP) List([0..30], n->(n+1)*Binomial(n+10, 4)/5); # Muniru A Asiru, Apr 10 2018
(PARI) a(n)=(n+1)*binomial(n+10, 4)/5 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Sixth diagonal of Catalan triangle A033184.
Sixth column of Catalan triangle A009766.
Sequence in context: A298236 A299362 A304613 * A244102 A045088 A303860
KEYWORD
nonn,walk,easy
AUTHOR
EXTENSIONS
More terms and formula from Wolfdieter Lang, Sep 04 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 18:18 EDT 2024. Contains 372880 sequences. (Running on oeis4.)